(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* In x s -> In y s. Proof. intros E; rewrite E; auto. Qed. Lemma mem_1 : In x s -> mem x s = true. Proof. intros; apply <- mem_spec; auto. Qed. Lemma mem_2 : mem x s = true -> In x s. Proof. intros; apply -> mem_spec; auto. Qed. Lemma equal_1 : Equal s s' -> equal s s' = true. Proof. intros; apply <- equal_spec; auto. Qed. Lemma equal_2 : equal s s' = true -> Equal s s'. Proof. intros; apply -> equal_spec; auto. Qed. Lemma subset_1 : Subset s s' -> subset s s' = true. Proof. intros; apply <- subset_spec; auto. Qed. Lemma subset_2 : subset s s' = true -> Subset s s'. Proof. intros; apply -> subset_spec; auto. Qed. Lemma is_empty_1 : Empty s -> is_empty s = true. Proof. intros; apply <- is_empty_spec; auto. Qed. Lemma is_empty_2 : is_empty s = true -> Empty s. Proof. intros; apply -> is_empty_spec; auto. Qed. Lemma add_1 : E.eq x y -> In y (add x s). Proof. intros; apply <- add_spec. auto with relations. Qed. Lemma add_2 : In y s -> In y (add x s). Proof. intros; apply <- add_spec; auto. Qed. Lemma add_3 : ~ E.eq x y -> In y (add x s) -> In y s. Proof. rewrite add_spec. intros H [H'|H']; auto. elim H; auto with relations. Qed. Lemma remove_1 : E.eq x y -> ~ In y (remove x s). Proof. intros; rewrite remove_spec; intuition. Qed. Lemma remove_2 : ~ E.eq x y -> In y s -> In y (remove x s). Proof. intros; apply <- remove_spec; auto with relations. Qed. Lemma remove_3 : In y (remove x s) -> In y s. Proof. rewrite remove_spec; intuition. Qed. Lemma singleton_1 : In y (singleton x) -> E.eq x y. Proof. rewrite singleton_spec; auto with relations. Qed. Lemma singleton_2 : E.eq x y -> In y (singleton x). Proof. rewrite singleton_spec; auto with relations. Qed. Lemma union_1 : In x (union s s') -> In x s \/ In x s'. Proof. rewrite union_spec; auto. Qed. Lemma union_2 : In x s -> In x (union s s'). Proof. rewrite union_spec; auto. Qed. Lemma union_3 : In x s' -> In x (union s s'). Proof. rewrite union_spec; auto. Qed. Lemma inter_1 : In x (inter s s') -> In x s. Proof. rewrite inter_spec; intuition. Qed. Lemma inter_2 : In x (inter s s') -> In x s'. Proof. rewrite inter_spec; intuition. Qed. Lemma inter_3 : In x s -> In x s' -> In x (inter s s'). Proof. rewrite inter_spec; intuition. Qed. Lemma diff_1 : In x (diff s s') -> In x s. Proof. rewrite diff_spec; intuition. Qed. Lemma diff_2 : In x (diff s s') -> ~ In x s'. Proof. rewrite diff_spec; intuition. Qed. Lemma diff_3 : In x s -> ~ In x s' -> In x (diff s s'). Proof. rewrite diff_spec; auto. Qed. Variable f : elt -> bool. Notation compatb := (Proper (E.eq==>Logic.eq)) (only parsing). Lemma filter_1 : compatb f -> In x (filter f s) -> In x s. Proof. intros P; rewrite filter_spec; intuition. Qed. Lemma filter_2 : compatb f -> In x (filter f s) -> f x = true. Proof. intros P; rewrite filter_spec; intuition. Qed. Lemma filter_3 : compatb f -> In x s -> f x = true -> In x (filter f s). Proof. intros P; rewrite filter_spec; intuition. Qed. Lemma for_all_1 : compatb f -> For_all (fun x => f x = true) s -> for_all f s = true. Proof. intros; apply <- for_all_spec; auto. Qed. Lemma for_all_2 : compatb f -> for_all f s = true -> For_all (fun x => f x = true) s. Proof. intros; apply -> for_all_spec; auto. Qed. Lemma exists_1 : compatb f -> Exists (fun x => f x = true) s -> exists_ f s = true. Proof. intros; apply <- exists_spec; auto. Qed. Lemma exists_2 : compatb f -> exists_ f s = true -> Exists (fun x => f x = true) s. Proof. intros; apply -> exists_spec; auto. Qed. Lemma elements_1 : In x s -> InA E.eq x (elements s). Proof. intros; apply <- elements_spec1; auto. Qed. Lemma elements_2 : InA E.eq x (elements s) -> In x s. Proof. intros; apply -> elements_spec1; auto. Qed. End ImplSpec. Notation empty_1 := empty_spec (only parsing). Notation fold_1 := fold_spec (only parsing). Notation cardinal_1 := cardinal_spec (only parsing). Notation partition_1 := partition_spec1 (only parsing). Notation partition_2 := partition_spec2 (only parsing). Notation choose_1 := choose_spec1 (only parsing). Notation choose_2 := choose_spec2 (only parsing). Notation elements_3w := elements_spec2w (only parsing). Hint Resolve mem_1 equal_1 subset_1 empty_1 is_empty_1 choose_1 choose_2 add_1 add_2 remove_1 remove_2 singleton_2 union_1 union_2 union_3 inter_3 diff_3 fold_1 filter_3 for_all_1 exists_1 partition_1 partition_2 elements_1 elements_3w : set. Hint Immediate In_1 mem_2 equal_2 subset_2 is_empty_2 add_3 remove_3 singleton_1 inter_1 inter_2 diff_1 diff_2 filter_1 filter_2 for_all_2 exists_2 elements_2 : set. (** * Specifications written using equivalences : this is now provided by the default interface. *) Section IffSpec. Variable s s' s'' : t. Variable x y z : elt. Lemma In_eq_iff : E.eq x y -> (In x s <-> In y s). Proof. intros E; rewrite E; intuition. Qed. Lemma mem_iff : In x s <-> mem x s = true. Proof. apply iff_sym, mem_spec. Qed. Lemma not_mem_iff : ~In x s <-> mem x s = false. Proof. rewrite <-mem_spec; destruct (mem x s); intuition. Qed. Lemma equal_iff : s[=]s' <-> equal s s' = true. Proof. apply iff_sym, equal_spec. Qed. Lemma subset_iff : s[<=]s' <-> subset s s' = true. Proof. apply iff_sym, subset_spec. Qed. Lemma empty_iff : In x empty <-> False. Proof. intuition; apply (empty_spec H). Qed. Lemma is_empty_iff : Empty s <-> is_empty s = true. Proof. apply iff_sym, is_empty_spec. Qed. Lemma singleton_iff : In y (singleton x) <-> E.eq x y. Proof. rewrite singleton_spec; intuition. Qed. Lemma add_iff : In y (add x s) <-> E.eq x y \/ In y s. Proof. rewrite add_spec; intuition. Qed. Lemma add_neq_iff : ~ E.eq x y -> (In y (add x s) <-> In y s). Proof. rewrite add_spec; intuition. elim H; auto with relations. Qed. Lemma remove_iff : In y (remove x s) <-> In y s /\ ~E.eq x y. Proof. rewrite remove_spec; intuition. Qed. Lemma remove_neq_iff : ~ E.eq x y -> (In y (remove x s) <-> In y s). Proof. rewrite remove_spec; intuition. Qed. Variable f : elt -> bool. Lemma for_all_iff : Proper (E.eq==>Logic.eq) f -> (For_all (fun x => f x = true) s <-> for_all f s = true). Proof. intros; apply iff_sym, for_all_spec; auto. Qed. Lemma exists_iff : Proper (E.eq==>Logic.eq) f -> (Exists (fun x => f x = true) s <-> exists_ f s = true). Proof. intros; apply iff_sym, exists_spec; auto. Qed. Lemma elements_iff : In x s <-> InA E.eq x (elements s). Proof. apply iff_sym, elements_spec1. Qed. End IffSpec. Notation union_iff := union_spec (only parsing). Notation inter_iff := inter_spec (only parsing). Notation diff_iff := diff_spec (only parsing). Notation filter_iff := filter_spec (only parsing). (** Useful tactic for simplifying expressions like [In y (add x (union s s'))] *) Ltac set_iff := repeat (progress ( rewrite add_iff || rewrite remove_iff || rewrite singleton_iff || rewrite union_iff || rewrite inter_iff || rewrite diff_iff || rewrite empty_iff)). (** * Specifications written using boolean predicates *) Section BoolSpec. Variable s s' s'' : t. Variable x y z : elt. Lemma mem_b : E.eq x y -> mem x s = mem y s. Proof. intros. generalize (mem_iff s x) (mem_iff s y)(In_eq_iff s H). destruct (mem x s); destruct (mem y s); intuition. Qed. Lemma empty_b : mem y empty = false. Proof. generalize (empty_iff y)(mem_iff empty y). destruct (mem y empty); intuition. Qed. Lemma add_b : mem y (add x s) = eqb x y || mem y s. Proof. generalize (mem_iff (add x s) y)(mem_iff s y)(add_iff s x y); unfold eqb. destruct (eq_dec x y); destruct (mem y s); destruct (mem y (add x s)); intuition. Qed. Lemma add_neq_b : ~ E.eq x y -> mem y (add x s) = mem y s. Proof. intros; generalize (mem_iff (add x s) y)(mem_iff s y)(add_neq_iff s H). destruct (mem y s); destruct (mem y (add x s)); intuition. Qed. Lemma remove_b : mem y (remove x s) = mem y s && negb (eqb x y). Proof. generalize (mem_iff (remove x s) y)(mem_iff s y)(remove_iff s x y); unfold eqb. destruct (eq_dec x y); destruct (mem y s); destruct (mem y (remove x s)); simpl; intuition. Qed. Lemma remove_neq_b : ~ E.eq x y -> mem y (remove x s) = mem y s. Proof. intros; generalize (mem_iff (remove x s) y)(mem_iff s y)(remove_neq_iff s H). destruct (mem y s); destruct (mem y (remove x s)); intuition. Qed. Lemma singleton_b : mem y (singleton x) = eqb x y. Proof. generalize (mem_iff (singleton x) y)(singleton_iff x y); unfold eqb. destruct (eq_dec x y); destruct (mem y (singleton x)); intuition. Qed. Lemma union_b : mem x (union s s') = mem x s || mem x s'. Proof. generalize (mem_iff (union s s') x)(mem_iff s x)(mem_iff s' x)(union_iff s s' x). destruct (mem x s); destruct (mem x s'); destruct (mem x (union s s')); intuition. Qed. Lemma inter_b : mem x (inter s s') = mem x s && mem x s'. Proof. generalize (mem_iff (inter s s') x)(mem_iff s x)(mem_iff s' x)(inter_iff s s' x). destruct (mem x s); destruct (mem x s'); destruct (mem x (inter s s')); intuition. Qed. Lemma diff_b : mem x (diff s s') = mem x s && negb (mem x s'). Proof. generalize (mem_iff (diff s s') x)(mem_iff s x)(mem_iff s' x)(diff_iff s s' x). destruct (mem x s); destruct (mem x s'); destruct (mem x (diff s s')); simpl; intuition. Qed. Lemma elements_b : mem x s = existsb (eqb x) (elements s). Proof. generalize (mem_iff s x)(elements_iff s x)(existsb_exists (eqb x) (elements s)). rewrite InA_alt. destruct (mem x s); destruct (existsb (eqb x) (elements s)); auto; intros. symmetry. rewrite H1. destruct H0 as (H0,_). destruct H0 as (a,(Ha1,Ha2)); [ intuition |]. exists a; intuition. unfold eqb; destruct (eq_dec x a); auto. rewrite <- H. rewrite H0. destruct H1 as (H1,_). destruct H1 as (a,(Ha1,Ha2)); [intuition|]. exists a; intuition. unfold eqb in *; destruct (eq_dec x a); auto; discriminate. Qed. Variable f : elt->bool. Lemma filter_b : Proper (E.eq==>Logic.eq) f -> mem x (filter f s) = mem x s && f x. Proof. intros. generalize (mem_iff (filter f s) x)(mem_iff s x)(filter_iff s x H). destruct (mem x s); destruct (mem x (filter f s)); destruct (f x); simpl; intuition. Qed. Lemma for_all_b : Proper (E.eq==>Logic.eq) f -> for_all f s = forallb f (elements s). Proof. intros. generalize (forallb_forall f (elements s))(for_all_iff s H)(elements_iff s). unfold For_all. destruct (forallb f (elements s)); destruct (for_all f s); auto; intros. rewrite <- H1; intros. destruct H0 as (H0,_). rewrite (H2 x0) in H3. rewrite (InA_alt E.eq x0 (elements s)) in H3. destruct H3 as (a,(Ha1,Ha2)). rewrite (H _ _ Ha1). apply H0; auto. symmetry. rewrite H0; intros. destruct H1 as (_,H1). apply H1; auto. rewrite H2. rewrite InA_alt. exists x0; split; auto with relations. Qed. Lemma exists_b : Proper (E.eq==>Logic.eq) f -> exists_ f s = existsb f (elements s). Proof. intros. generalize (existsb_exists f (elements s))(exists_iff s H)(elements_iff s). unfold Exists. destruct (existsb f (elements s)); destruct (exists_ f s); auto; intros. rewrite <- H1; intros. destruct H0 as (H0,_). destruct H0 as (a,(Ha1,Ha2)); auto. exists a; split; auto. rewrite H2; rewrite InA_alt; exists a; auto with relations. symmetry. rewrite H0. destruct H1 as (_,H1). destruct H1 as (a,(Ha1,Ha2)); auto. rewrite (H2 a) in Ha1. rewrite (InA_alt E.eq a (elements s)) in Ha1. destruct Ha1 as (b,(Hb1,Hb2)). exists b; auto. rewrite <- (H _ _ Hb1); auto. Qed. End BoolSpec. (** * Declarations of morphisms with respects to [E.eq] and [Equal] *) Instance In_m : Proper (E.eq==>Equal==>iff) In. Proof. unfold Equal; intros x y H s s' H0. rewrite (In_eq_iff s H); auto. Qed. Instance Empty_m : Proper (Equal==>iff) Empty. Proof. repeat red; unfold Empty; intros s s' E. setoid_rewrite E; auto. Qed. Instance is_empty_m : Proper (Equal==>Logic.eq) is_empty. Proof. intros s s' H. generalize (is_empty_iff s). rewrite H at 1. rewrite is_empty_iff. destruct (is_empty s); destruct (is_empty s'); intuition. Qed. Instance mem_m : Proper (E.eq==>Equal==>Logic.eq) mem. Proof. intros x x' Hx s s' Hs. generalize (mem_iff s x). rewrite Hs, Hx at 1; rewrite mem_iff. destruct (mem x s), (mem x' s'); intuition. Qed. Instance singleton_m : Proper (E.eq==>Equal) singleton. Proof. intros x y H a. rewrite !singleton_iff, H; intuition. Qed. Instance add_m : Proper (E.eq==>Equal==>Equal) add. Proof. intros x x' Hx s s' Hs a. rewrite !add_iff, Hx, Hs; intuition. Qed. Instance remove_m : Proper (E.eq==>Equal==>Equal) remove. Proof. intros x x' Hx s s' Hs a. rewrite !remove_iff, Hx, Hs; intuition. Qed. Instance union_m : Proper (Equal==>Equal==>Equal) union. Proof. intros s1 s1' Hs1 s2 s2' Hs2 a. rewrite !union_iff, Hs1, Hs2; intuition. Qed. Instance inter_m : Proper (Equal==>Equal==>Equal) inter. Proof. intros s1 s1' Hs1 s2 s2' Hs2 a. rewrite !inter_iff, Hs1, Hs2; intuition. Qed. Instance diff_m : Proper (Equal==>Equal==>Equal) diff. Proof. intros s1 s1' Hs1 s2 s2' Hs2 a. rewrite !diff_iff, Hs1, Hs2; intuition. Qed. Instance Subset_m : Proper (Equal==>Equal==>iff) Subset. Proof. unfold Equal, Subset; firstorder. Qed. Instance subset_m : Proper (Equal==>Equal==>Logic.eq) subset. Proof. intros s1 s1' Hs1 s2 s2' Hs2. generalize (subset_iff s1 s2). rewrite Hs1, Hs2 at 1. rewrite subset_iff. destruct (subset s1 s2); destruct (subset s1' s2'); intuition. Qed. Instance equal_m : Proper (Equal==>Equal==>Logic.eq) equal. Proof. intros s1 s1' Hs1 s2 s2' Hs2. generalize (equal_iff s1 s2). rewrite Hs1,Hs2 at 1. rewrite equal_iff. destruct (equal s1 s2); destruct (equal s1' s2'); intuition. Qed. Instance SubsetSetoid : PreOrder Subset. (* reflexive + transitive *) Proof. firstorder. Qed. Definition Subset_refl := @PreOrder_Reflexive _ _ SubsetSetoid. Definition Subset_trans := @PreOrder_Transitive _ _ SubsetSetoid. Instance In_s_m : Morphisms.Proper (E.eq ==> Subset ++> impl) In | 1. Proof. simpl_relation. eauto with set. Qed. Instance Empty_s_m : Proper (Subset-->impl) Empty. Proof. firstorder. Qed. Instance add_s_m : Proper (E.eq==>Subset++>Subset) add. Proof. intros x x' Hx s s' Hs a. rewrite !add_iff, Hx; intuition. Qed. Instance remove_s_m : Proper (E.eq==>Subset++>Subset) remove. Proof. intros x x' Hx s s' Hs a. rewrite !remove_iff, Hx; intuition. Qed. Instance union_s_m : Proper (Subset++>Subset++>Subset) union. Proof. intros s1 s1' Hs1 s2 s2' Hs2 a. rewrite !union_iff, Hs1, Hs2; intuition. Qed. Instance inter_s_m : Proper (Subset++>Subset++>Subset) inter. Proof. intros s1 s1' Hs1 s2 s2' Hs2 a. rewrite !inter_iff, Hs1, Hs2; intuition. Qed. Instance diff_s_m : Proper (Subset++>Subset-->Subset) diff. Proof. intros s1 s1' Hs1 s2 s2' Hs2 a. rewrite !diff_iff, Hs1, Hs2; intuition. Qed. (* [fold], [filter], [for_all], [exists_] and [partition] requires some knowledge on [f] in order to be known as morphisms. *) Generalizable Variables f. Instance filter_equal : forall `(Proper _ (E.eq==>Logic.eq) f), Proper (Equal==>Equal) (filter f). Proof. intros f Hf s s' Hs a. rewrite !filter_iff, Hs by auto; intuition. Qed. Instance filter_subset : forall `(Proper _ (E.eq==>Logic.eq) f), Proper (Subset==>Subset) (filter f). Proof. intros f Hf s s' Hs a. rewrite !filter_iff, Hs by auto; intuition. Qed. Lemma filter_ext : forall f f', Proper (E.eq==>Logic.eq) f -> (forall x, f x = f' x) -> forall s s', s[=]s' -> filter f s [=] filter f' s'. Proof. intros f f' Hf Hff' s s' Hss' x. rewrite 2 filter_iff; auto. rewrite Hff', Hss'; intuition. red; red; intros; rewrite <- 2 Hff'; auto. Qed. (* For [elements], [min_elt], [max_elt] and [choose], we would need setoid structures on [list elt] and [option elt]. *) (* Later: Add Morphism cardinal ; cardinal_m. *) End WFactsOn. (** Now comes variants for self-contained weak sets and for full sets. For these variants, only one argument is necessary. Thanks to the subtyping [WS<=S], the [Facts] functor which is meant to be used on modules [(M:S)] can simply be an alias of [WFacts]. *) Module WFacts (M:WSets) := WFactsOn M.E M. Module Facts := WFacts.