(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* x | y~1 => rev_append y x~1 | y~0 => rev_append y x~0 end. Local Infix "@" := rev_append (at level 60). Definition rev x := x@1. (** The module of maps over positive keys *) Module PositiveMap <: S with Module E:=PositiveOrderedTypeBits. Module E:=PositiveOrderedTypeBits. Module ME:=KeyOrderedType E. Definition key := positive : Type. Definition eq_key {A} (p p':key*A) := E.eq (fst p) (fst p'). Definition eq_key_elt {A} (p p':key*A) := E.eq (fst p) (fst p') /\ (snd p) = (snd p'). Definition lt_key {A} (p p':key*A) := E.lt (fst p) (fst p'). Instance eqk_equiv {A} : Equivalence (@eq_key A) := _. Instance eqke_equiv {A} : Equivalence (@eq_key_elt A) := _. Instance ltk_strorder {A} : StrictOrder (@lt_key A) := _. Inductive tree (A : Type) := | Leaf : tree A | Node : tree A -> option A -> tree A -> tree A. Arguments Leaf {A}. Scheme tree_ind := Induction for tree Sort Prop. Definition t := tree. Definition empty {A} : t A := Leaf. Section A. Variable A:Type. Fixpoint is_empty (m : t A) : bool := match m with | Leaf => true | Node l None r => (is_empty l) &&& (is_empty r) | _ => false end. Fixpoint find (i : key) (m : t A) : option A := match m with | Leaf => None | Node l o r => match i with | xH => o | xO ii => find ii l | xI ii => find ii r end end. Fixpoint mem (i : key) (m : t A) : bool := match m with | Leaf => false | Node l o r => match i with | xH => match o with None => false | _ => true end | xO ii => mem ii l | xI ii => mem ii r end end. Fixpoint add (i : key) (v : A) (m : t A) : t A := match m with | Leaf => match i with | xH => Node Leaf (Some v) Leaf | xO ii => Node (add ii v Leaf) None Leaf | xI ii => Node Leaf None (add ii v Leaf) end | Node l o r => match i with | xH => Node l (Some v) r | xO ii => Node (add ii v l) o r | xI ii => Node l o (add ii v r) end end. (** helper function to avoid creating empty trees that are not leaves *) Definition node (l : t A) (o: option A) (r : t A) : t A := match o,l,r with | None,Leaf,Leaf => Leaf | _,_,_ => Node l o r end. Fixpoint remove (i : key) (m : t A) : t A := match m with | Leaf => Leaf | Node l o r => match i with | xH => node l None r | xO ii => node (remove ii l) o r | xI ii => node l o (remove ii r) end end. (** [bindings] *) Fixpoint xbindings (m : t A) (i : positive) (a: list (key*A)) := match m with | Leaf => a | Node l None r => xbindings l i~0 (xbindings r i~1 a) | Node l (Some e) r => xbindings l i~0 ((rev i,e) :: xbindings r i~1 a) end. Definition bindings (m : t A) := xbindings m 1 nil. (** [cardinal] *) Fixpoint cardinal (m : t A) : nat := match m with | Leaf => 0%nat | Node l None r => (cardinal l + cardinal r)%nat | Node l (Some _) r => S (cardinal l + cardinal r) end. (** Specification proofs *) Definition MapsTo (i:key)(v:A)(m:t A) := find i m = Some v. Definition In (i:key)(m:t A) := exists e:A, MapsTo i e m. Lemma MapsTo_compat : Proper (E.eq==>eq==>eq==>iff) MapsTo. Proof. intros k k' Hk e e' He m m' Hm. red in Hk. now subst. Qed. Lemma find_spec m x e : find x m = Some e <-> MapsTo x e m. Proof. reflexivity. Qed. Lemma mem_find : forall m x, mem x m = match find x m with None => false | _ => true end. Proof. induction m; destruct x; simpl; auto. Qed. Lemma mem_spec : forall m x, mem x m = true <-> In x m. Proof. unfold In, MapsTo; intros m x; rewrite mem_find. split. - destruct (find x m). exists a; auto. intros; discriminate. - destruct 1 as (e0,H0); rewrite H0; auto. Qed. Lemma gleaf : forall (i : key), find i Leaf = None. Proof. destruct i; simpl; auto. Qed. Theorem empty_spec: forall (i: key), find i empty = None. Proof. exact gleaf. Qed. Lemma is_empty_spec m : is_empty m = true <-> forall k, find k m = None. Proof. induction m; simpl. - intuition. apply empty_spec. - destruct o. split; try discriminate. intros H. now specialize (H xH). rewrite <- andb_lazy_alt, andb_true_iff, IHm1, IHm2. clear IHm1 IHm2. split. + intros (H1,H2) k. destruct k; simpl; auto. + intros H; split; intros k. apply (H (xO k)). apply (H (xI k)). Qed. Theorem add_spec1: forall (m: t A) (i: key) (x: A), find i (add i x m) = Some x. Proof. intros m i; revert m. induction i; destruct m; simpl; auto. Qed. Theorem add_spec2: forall (m: t A) (i j: key) (x: A), i <> j -> find j (add i x m) = find j m. Proof. intros m i j; revert m i. induction j; destruct i, m; simpl; intros; rewrite ?IHj, ?gleaf; auto; try congruence. Qed. Lemma rleaf : forall (i : key), remove i Leaf = Leaf. Proof. destruct i; simpl; auto. Qed. Lemma gnode l o r i : find i (node l o r) = find i (Node l o r). Proof. destruct o,l,r; simpl; trivial. destruct i; simpl; now rewrite ?gleaf. Qed. Opaque node. Theorem remove_spec1: forall (m: t A)(i: key), find i (remove i m) = None. Proof. induction m; simpl. - intros; rewrite rleaf. apply gleaf. - destruct i; simpl remove; rewrite gnode; simpl; auto. Qed. Theorem remove_spec2: forall (m: t A)(i j: key), i <> j -> find j (remove i m) = find j m. Proof. induction m; simpl; intros. - now rewrite rleaf. - destruct i; simpl; rewrite gnode; destruct j; simpl; trivial; try apply IHm1; try apply IHm2; congruence. Qed. Local Notation InL := (InA eq_key_elt). Lemma xbindings_spec: forall m j acc k e, InL (k,e) (xbindings m j acc) <-> InL (k,e) acc \/ exists x, k=(j@x) /\ find x m = Some e. Proof. induction m as [|l IHl o r IHr]; simpl. - intros. split; intro H. + now left. + destruct H as [H|[x [_ H]]]. assumption. now rewrite gleaf in H. - intros j acc k e. case o as [e'|]; rewrite IHl, ?InA_cons, IHr; clear IHl IHr; split. + intros [[H|[H|H]]|H]; auto. * unfold eq_key_elt, E.eq, fst, snd in H. destruct H as (->,<-). right. now exists 1. * destruct H as (x,(->,H)). right. now exists x~1. * destruct H as (x,(->,H)). right. now exists x~0. + intros [H|H]; auto. destruct H as (x,(->,H)). destruct x; simpl in *. * left. right. right. now exists x. * right. now exists x. * left. left. injection H as ->. reflexivity. + intros [[H|H]|H]; auto. * destruct H as (x,(->,H)). right. now exists x~1. * destruct H as (x,(->,H)). right. now exists x~0. + intros [H|H]; auto. destruct H as (x,(->,H)). destruct x; simpl in *. * left. right. now exists x. * right. now exists x. * discriminate. Qed. Lemma lt_rev_append: forall j x y, E.lt x y -> E.lt (j@x) (j@y). Proof. induction j; intros; simpl; auto. Qed. Lemma xbindings_sort m j acc : sort lt_key acc -> (forall x p, In x m -> InL p acc -> E.lt (j@x) (fst p)) -> sort lt_key (xbindings m j acc). Proof. revert j acc. induction m as [|l IHl o r IHr]; simpl; trivial. intros j acc Hacc Hsacc. destruct o as [e|]. - apply IHl;[constructor;[apply IHr; [apply Hacc|]|]|]. + intros. now apply Hsacc. + case_eq (xbindings r j~1 acc); [constructor|]. intros (z,e') q H. constructor. assert (H': InL (z,e') (xbindings r j~1 acc)). { rewrite H. now constructor. } clear H q. rewrite xbindings_spec in H'. destruct H' as [H'|H']. * apply (Hsacc 1 (z,e')); trivial. now exists e. * destruct H' as (x,(->,H)). red. simpl. now apply lt_rev_append. + intros x (y,e') Hx Hy. inversion_clear Hy. rewrite H. simpl. now apply lt_rev_append. rewrite xbindings_spec in H. destruct H as [H|H]. * now apply Hsacc. * destruct H as (z,(->,H)). simpl. now apply lt_rev_append. - apply IHl; [apply IHr; [apply Hacc|]|]. + intros. now apply Hsacc. + intros x (y,e') Hx H. rewrite xbindings_spec in H. destruct H as [H|H]. * now apply Hsacc. * destruct H as (z,(->,H)). simpl. now apply lt_rev_append. Qed. Lemma bindings_spec1 m k e : InA eq_key_elt (k,e) (bindings m) <-> MapsTo k e m. Proof. unfold bindings, MapsTo. rewrite xbindings_spec. split; [ intros [H|(y & H & H')] | intros IN ]. - inversion H. - simpl in *. now subst. - right. now exists k. Qed. Lemma bindings_spec2 m : sort lt_key (bindings m). Proof. unfold bindings. apply xbindings_sort. constructor. inversion 2. Qed. Lemma bindings_spec2w m : NoDupA eq_key (bindings m). Proof. apply ME.Sort_NoDupA. apply bindings_spec2. Qed. Lemma xbindings_length m j acc : length (xbindings m j acc) = (cardinal m + length acc)%nat. Proof. revert j acc. induction m; simpl; trivial; intros. destruct o; simpl; rewrite IHm1; simpl; rewrite IHm2; now rewrite ?Nat.add_succ_r, Nat.add_assoc. Qed. Lemma cardinal_spec m : cardinal m = length (bindings m). Proof. unfold bindings. rewrite xbindings_length. simpl. symmetry. apply Nat.add_0_r. Qed. (** [map] and [mapi] *) Variable B : Type. Section Mapi. Variable f : key -> option A -> option B. Fixpoint xmapi (m : t A) (i : key) : t B := match m with | Leaf => Leaf | Node l o r => Node (xmapi l (i~0)) (f (rev i) o) (xmapi r (i~1)) end. End Mapi. Definition mapi (f : key -> A -> B) m := xmapi (fun k => option_map (f k)) m 1. Definition map (f : A -> B) m := mapi (fun _ => f) m. End A. Lemma xgmapi: forall (A B: Type) (f: key -> option A -> option B) (i j : key) (m: t A), (forall k, f k None = None) -> find i (xmapi f m j) = f (j@i) (find i m). Proof. induction i; intros; destruct m; simpl; rewrite ?IHi; auto. Qed. Theorem mapi_spec0 : forall (A B: Type) (f: key -> A -> B) (i: key) (m: t A), find i (mapi f m) = option_map (f i) (find i m). Proof. intros. unfold mapi. rewrite xgmapi; simpl; auto. Qed. Lemma mapi_spec : forall (A B: Type) (f: key -> A -> B) (m: t A) (i:key), exists j, E.eq j i /\ find i (mapi f m) = option_map (f j) (find i m). Proof. intros. exists i. split. reflexivity. apply mapi_spec0. Qed. Lemma map_spec : forall (elt elt':Type)(f:elt->elt')(m: t elt)(x:key), find x (map f m) = option_map f (find x m). Proof. intros; unfold map. apply mapi_spec0. Qed. Section merge. Variable A B C : Type. Variable f : key -> option A -> option B -> option C. Fixpoint xmerge (m1 : t A)(m2 : t B)(i:positive) : t C := match m1 with | Leaf => xmapi (fun k => f k None) m2 i | Node l1 o1 r1 => match m2 with | Leaf => xmapi (fun k o => f k o None) m1 i | Node l2 o2 r2 => Node (xmerge l1 l2 (i~0)) (f (rev i) o1 o2) (xmerge r1 r2 (i~1)) end end. Lemma xgmerge: forall (i j: key)(m1:t A)(m2: t B), (forall i, f i None None = None) -> find i (xmerge m1 m2 j) = f (j@i) (find i m1) (find i m2). Proof. induction i; intros; destruct m1; destruct m2; simpl; auto; rewrite ?xgmapi, ?IHi; simpl; auto. Qed. End merge. Definition merge {A B C}(f:key->option A->option B->option C) m1 m2 := xmerge (fun k o1 o2 => match o1,o2 with | None,None => None | _, _ => f k o1 o2 end) m1 m2 xH. Lemma merge_spec1 {A B C}(f:key->option A->option B->option C) : forall m m' x, In x m \/ In x m' -> exists y, E.eq y x /\ find x (merge f m m') = f y (find x m) (find x m'). Proof. intros. exists x. split. reflexivity. unfold merge. rewrite xgmerge; simpl; auto. rewrite <- 2 mem_spec, 2 mem_find in H. destruct (find x m); simpl; auto. destruct (find x m'); simpl; auto. intuition discriminate. Qed. Lemma merge_spec2 {A B C}(f:key->option A->option B->option C) : forall m m' x, In x (merge f m m') -> In x m \/ In x m'. Proof. intros. rewrite <-mem_spec, mem_find in H. unfold merge in H. rewrite xgmerge in H; simpl; auto. rewrite <- 2 mem_spec, 2 mem_find. destruct (find x m); simpl in *; auto. destruct (find x m'); simpl in *; auto. Qed. Section Fold. Variables A B : Type. Variable f : key -> A -> B -> B. (** the additional argument, [i], records the current path, in reverse order (this should be more efficient: we reverse this argument only at present nodes only, rather than at each node of the tree). we also use this convention in all functions below *) Fixpoint xfold (m : t A) (v : B) (i : key) := match m with | Leaf => v | Node l (Some x) r => xfold r (f (rev i) x (xfold l v i~0)) i~1 | Node l None r => xfold r (xfold l v i~0) i~1 end. Definition fold m i := xfold m i 1. End Fold. Lemma fold_spec : forall {A}(m:t A){B}(i : B) (f : key -> A -> B -> B), fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (bindings m) i. Proof. unfold fold, bindings. intros A m B i f. revert m i. set (f' := fun a p => f (fst p) (snd p) a). assert (H: forall m i j acc, fold_left f' acc (xfold f m i j) = fold_left f' (xbindings m j acc) i). { induction m as [|l IHl o r IHr]; intros; trivial. destruct o; simpl; now rewrite IHr, <- IHl. } intros. exact (H m i 1 nil). Qed. Fixpoint equal (A:Type)(cmp : A -> A -> bool)(m1 m2 : t A) : bool := match m1, m2 with | Leaf, _ => is_empty m2 | _, Leaf => is_empty m1 | Node l1 o1 r1, Node l2 o2 r2 => (match o1, o2 with | None, None => true | Some v1, Some v2 => cmp v1 v2 | _, _ => false end) &&& equal cmp l1 l2 &&& equal cmp r1 r2 end. Definition Equal (A:Type)(m m':t A) := forall y, find y m = find y m'. Definition Equiv (A:Type)(eq_elt:A->A->Prop) m m' := (forall k, In k m <-> In k m') /\ (forall k e e', MapsTo k e m -> MapsTo k e' m' -> eq_elt e e'). Definition Equivb (A:Type)(cmp: A->A->bool) := Equiv (Cmp cmp). Lemma equal_1 : forall (A:Type)(m m':t A)(cmp:A->A->bool), Equivb cmp m m' -> equal cmp m m' = true. Proof. induction m. - (* m = Leaf *) destruct 1 as (E,_); simpl. apply is_empty_spec; intros k. destruct (find k m') eqn:F; trivial. assert (H : In k m') by now exists a. rewrite <- E in H. destruct H as (x,H). red in H. now rewrite gleaf in H. - (* m = Node *) destruct m'. + (* m' = Leaf *) destruct 1 as (E,_); simpl. destruct o. * assert (H : In xH (@Leaf A)). { rewrite <- E. now exists a. } destruct H as (e,H). now red in H. * apply andb_true_intro; split; apply is_empty_spec; intros k. destruct (find k m1) eqn:F; trivial. assert (H : In (xO k) (@Leaf A)). { rewrite <- E. exists a; auto. } destruct H as (x,H). red in H. now rewrite gleaf in H. destruct (find k m2) eqn:F; trivial. assert (H : In (xI k) (@Leaf A)). { rewrite <- E. exists a; auto. } destruct H as (x,H). red in H. now rewrite gleaf in H. + (* m' = Node *) destruct 1. assert (Equivb cmp m1 m'1). { split. intros k; generalize (H (xO k)); unfold In, MapsTo; simpl; auto. intros k e e'; generalize (H0 (xO k) e e'); unfold In, MapsTo; simpl; auto. } assert (Equivb cmp m2 m'2). { split. intros k; generalize (H (xI k)); unfold In, MapsTo; simpl; auto. intros k e e'; generalize (H0 (xI k) e e'); unfold In, MapsTo; simpl; auto. } simpl. destruct o; destruct o0; simpl. repeat (apply andb_true_intro; split); auto. apply (H0 xH); red; auto. generalize (H xH); unfold In, MapsTo; simpl; intuition. destruct H4; try discriminate; eauto. generalize (H xH); unfold In, MapsTo; simpl; intuition. destruct H5; try discriminate; eauto. apply andb_true_intro; split; auto. Qed. Lemma equal_2 : forall (A:Type)(m m':t A)(cmp:A->A->bool), equal cmp m m' = true -> Equivb cmp m m'. Proof. induction m. (* m = Leaf *) simpl. split; intros. split. destruct 1; red in H0; destruct k; discriminate. rewrite is_empty_spec in H. intros (e,H'). red in H'. now rewrite H in H'. red in H0; destruct k; discriminate. (* m = Node *) destruct m'. (* m' = Leaf *) simpl. destruct o; intros; try discriminate. destruct (andb_prop _ _ H); clear H. split; intros. split; unfold In, MapsTo; destruct 1. destruct k; simpl in *; try discriminate. rewrite is_empty_spec in H1. now rewrite H1 in H. rewrite is_empty_spec in H0. now rewrite H0 in H. destruct k; simpl in *; discriminate. unfold In, MapsTo; destruct k; simpl in *; discriminate. (* m' = Node *) destruct o; destruct o0; simpl; intros; try discriminate. destruct (andb_prop _ _ H); clear H. destruct (andb_prop _ _ H0); clear H0. destruct (IHm1 _ _ H2); clear H2 IHm1. destruct (IHm2 _ _ H1); clear H1 IHm2. split; intros. destruct k; unfold In, MapsTo in *; simpl; auto. split; eauto. destruct k; unfold In, MapsTo in *; simpl in *. eapply H4; eauto. eapply H3; eauto. congruence. destruct (andb_prop _ _ H); clear H. destruct (IHm1 _ _ H0); clear H0 IHm1. destruct (IHm2 _ _ H1); clear H1 IHm2. split; intros. destruct k; unfold In, MapsTo in *; simpl; auto. split; eauto. destruct k; unfold In, MapsTo in *; simpl in *. eapply H3; eauto. eapply H2; eauto. try discriminate. Qed. Lemma equal_spec : forall (A:Type)(m m':t A)(cmp:A->A->bool), equal cmp m m' = true <-> Equivb cmp m m'. Proof. split. apply equal_2. apply equal_1. Qed. End PositiveMap. (** Here come some additionnal facts about this implementation. Most are facts that cannot be derivable from the general interface. *) Module PositiveMapAdditionalFacts. Import PositiveMap. (* Derivable from the Map interface *) Theorem gsspec {A} i j x (m: t A) : find i (add j x m) = if E.eq_dec i j then Some x else find i m. Proof. destruct (E.eq_dec i j) as [->|]; [ apply add_spec1 | apply add_spec2; auto ]. Qed. (* Not derivable from the Map interface *) Theorem gsident {A} i (m:t A) v : find i m = Some v -> add i v m = m. Proof. revert m. induction i; destruct m; simpl in *; try congruence. - intro H; now rewrite (IHi m2 H). - intro H; now rewrite (IHi m1 H). Qed. Lemma xmapi_ext {A B}(f g: key -> option A -> option B) : (forall k (o : option A), f k o = g k o) -> forall m i, xmapi f m i = xmapi g m i. Proof. induction m; intros; simpl; auto. now f_equal. Qed. Theorem xmerge_commut{A B C} (f: key -> option A -> option B -> option C) (g: key -> option B -> option A -> option C) : (forall k o1 o2, f k o1 o2 = g k o2 o1) -> forall m1 m2 i, xmerge f m1 m2 i = xmerge g m2 m1 i. Proof. intros E. induction m1; destruct m2; intros i; simpl; trivial; f_equal; try apply IHm1_1; try apply IHm1_2; try apply xmapi_ext; intros; apply E. Qed. Theorem merge_commut{A B C} (f: key -> option A -> option B -> option C) (g: key -> option B -> option A -> option C) : (forall k o1 o2, f k o1 o2 = g k o2 o1) -> forall m1 m2, merge f m1 m2 = merge g m2 m1. Proof. intros E m1 m2. unfold merge. apply xmerge_commut. intros k [x1|] [x2|]; trivial. Qed. End PositiveMapAdditionalFacts.