(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* (b=true <-> b'=true). Proof. destruct b, b'; intuition. Qed. Lemma eq_option_alt {elt}(o o':option elt) : o=o' <-> (forall e, o=Some e <-> o'=Some e). Proof. split; intros. - now subst. - destruct o, o'; rewrite ?H; auto. symmetry; now apply H. Qed. Lemma option_map_some {A B}(f:A->B) o : option_map f o <> None <-> o <> None. Proof. destruct o; simpl. now split. split; now destruct 1. Qed. (** * Properties about weak maps *) Module WProperties_fun (E:DecidableType)(Import M:WSfun E). Definition Empty {elt}(m : t elt) := forall x e, ~MapsTo x e m. (** A few things about E.eq *) Lemma eq_refl x : E.eq x x. Proof. apply E.eq_equiv. Qed. Lemma eq_sym x y : E.eq x y -> E.eq y x. Proof. apply E.eq_equiv. Qed. Lemma eq_trans x y z : E.eq x y -> E.eq y z -> E.eq x z. Proof. apply E.eq_equiv. Qed. Hint Immediate eq_refl eq_sym : map. Hint Resolve eq_trans eq_equivalence E.eq_equiv : map. Definition eqb x y := if E.eq_dec x y then true else false. Lemma eqb_eq x y : eqb x y = true <-> E.eq x y. Proof. unfold eqb; case E.eq_dec; now intuition. Qed. Lemma eqb_sym x y : eqb x y = eqb y x. Proof. apply eq_bool_alt. rewrite !eqb_eq. split; apply E.eq_equiv. Qed. (** Initial results about MapsTo and In *) Lemma mapsto_fun {elt} m x (e e':elt) : MapsTo x e m -> MapsTo x e' m -> e=e'. Proof. rewrite <- !find_spec. congruence. Qed. Lemma in_find {elt} (m : t elt) x : In x m <-> find x m <> None. Proof. unfold In. split. - intros (e,H). rewrite <-find_spec in H. congruence. - destruct (find x m) as [e|] eqn:H. + exists e. now apply find_spec. + now destruct 1. Qed. Lemma not_in_find {elt} (m : t elt) x : ~In x m <-> find x m = None. Proof. rewrite in_find. split; auto. intros; destruct (find x m); trivial. now destruct H. Qed. Notation in_find_iff := in_find (only parsing). Notation not_find_in_iff := not_in_find (only parsing). (** * [Equal] is a setoid equality. *) Infix "==" := Equal (at level 30). Lemma Equal_refl {elt} (m : t elt) : m == m. Proof. red; reflexivity. Qed. Lemma Equal_sym {elt} (m m' : t elt) : m == m' -> m' == m. Proof. unfold Equal; auto. Qed. Lemma Equal_trans {elt} (m m' m'' : t elt) : m == m' -> m' == m'' -> m == m''. Proof. unfold Equal; congruence. Qed. Instance Equal_equiv {elt} : Equivalence (@Equal elt). Proof. constructor; [exact Equal_refl | exact Equal_sym | exact Equal_trans]. Qed. Arguments Equal {elt} m m'. Instance MapsTo_m {elt} : Proper (E.eq==>Logic.eq==>Equal==>iff) (@MapsTo elt). Proof. intros k k' Hk e e' <- m m' Hm. rewrite <- Hk. now rewrite <- !find_spec, Hm. Qed. Instance In_m {elt} : Proper (E.eq==>Equal==>iff) (@In elt). Proof. intros k k' Hk m m' Hm. unfold In. split; intros (e,H); exists e; revert H; now rewrite Hk, <- !find_spec, Hm. Qed. Instance find_m {elt} : Proper (E.eq==>Equal==>Logic.eq) (@find elt). Proof. intros k k' Hk m m' <-. rewrite eq_option_alt. intros. now rewrite !find_spec, Hk. Qed. Instance mem_m {elt} : Proper (E.eq==>Equal==>Logic.eq) (@mem elt). Proof. intros k k' Hk m m' Hm. now rewrite eq_bool_alt, !mem_spec, Hk, Hm. Qed. Instance Empty_m {elt} : Proper (Equal==>iff) (@Empty elt). Proof. intros m m' Hm. unfold Empty. now setoid_rewrite Hm. Qed. Instance is_empty_m {elt} : Proper (Equal ==> Logic.eq) (@is_empty elt). Proof. intros m m' Hm. rewrite eq_bool_alt, !is_empty_spec. now setoid_rewrite Hm. Qed. Instance add_m {elt} : Proper (E.eq==>Logic.eq==>Equal==>Equal) (@add elt). Proof. intros k k' Hk e e' <- m m' Hm y. destruct (E.eq_dec k y) as [H|H]. - rewrite <-H, add_spec1. now rewrite Hk, add_spec1. - rewrite !add_spec2; trivial. now rewrite <- Hk. Qed. Instance remove_m {elt} : Proper (E.eq==>Equal==>Equal) (@remove elt). Proof. intros k k' Hk m m' Hm y. destruct (E.eq_dec k y) as [H|H]. - rewrite <-H, remove_spec1. now rewrite Hk, remove_spec1. - rewrite !remove_spec2; trivial. now rewrite <- Hk. Qed. Instance map_m {elt elt'} : Proper ((Logic.eq==>Logic.eq)==>Equal==>Equal) (@map elt elt'). Proof. intros f f' Hf m m' Hm y. rewrite !map_spec, Hm. destruct (find y m'); simpl; trivial. f_equal. now apply Hf. Qed. Instance mapi_m {elt elt'} : Proper ((E.eq==>Logic.eq==>Logic.eq)==>Equal==>Equal) (@mapi elt elt'). Proof. intros f f' Hf m m' Hm y. destruct (mapi_spec f m y) as (x,(Hx,->)). destruct (mapi_spec f' m' y) as (x',(Hx',->)). rewrite <- Hm. destruct (find y m); trivial. simpl. f_equal. apply Hf; trivial. now rewrite Hx, Hx'. Qed. Instance merge_m {elt elt' elt''} : Proper ((E.eq==>Logic.eq==>Logic.eq==>Logic.eq)==>Equal==>Equal==>Equal) (@merge elt elt' elt''). Proof. intros f f' Hf m1 m1' Hm1 m2 m2' Hm2 y. destruct (find y m1) as [e1|] eqn:H1. - apply find_spec in H1. assert (H : In y m1 \/ In y m2) by (left; now exists e1). destruct (merge_spec1 f H) as (y1,(Hy1,->)). rewrite Hm1,Hm2 in H. destruct (merge_spec1 f' H) as (y2,(Hy2,->)). rewrite <- Hm1, <- Hm2. apply Hf; trivial. now transitivity y. - destruct (find y m2) as [e2|] eqn:H2. + apply find_spec in H2. assert (H : In y m1 \/ In y m2) by (right; now exists e2). destruct (merge_spec1 f H) as (y1,(Hy1,->)). rewrite Hm1,Hm2 in H. destruct (merge_spec1 f' H) as (y2,(Hy2,->)). rewrite <- Hm1, <- Hm2. apply Hf; trivial. now transitivity y. + apply not_in_find in H1. apply not_in_find in H2. assert (H : ~In y (merge f m1 m2)). { intro H. apply merge_spec2 in H. intuition. } apply not_in_find in H. rewrite H. symmetry. apply not_in_find. intro H'. apply merge_spec2 in H'. rewrite <- Hm1, <- Hm2 in H'. intuition. Qed. (* Later: compatibility for cardinal, fold, ... *) (** ** Earlier specifications (cf. FMaps) *) Section OldSpecs. Variable elt: Type. Implicit Type m: t elt. Implicit Type x y z: key. Implicit Type e: elt. Lemma MapsTo_1 m x y e : E.eq x y -> MapsTo x e m -> MapsTo y e m. Proof. now intros ->. Qed. Lemma find_1 m x e : MapsTo x e m -> find x m = Some e. Proof. apply find_spec. Qed. Lemma find_2 m x e : find x m = Some e -> MapsTo x e m. Proof. apply find_spec. Qed. Lemma mem_1 m x : In x m -> mem x m = true. Proof. apply mem_spec. Qed. Lemma mem_2 m x : mem x m = true -> In x m. Proof. apply mem_spec. Qed. Lemma empty_1 : Empty (@empty elt). Proof. intros x e. now rewrite <- find_spec, empty_spec. Qed. Lemma is_empty_1 m : Empty m -> is_empty m = true. Proof. unfold Empty; rewrite is_empty_spec. setoid_rewrite <- find_spec. intros H x. specialize (H x). destruct (find x m) as [e|]; trivial. now destruct (H e). Qed. Lemma is_empty_2 m : is_empty m = true -> Empty m. Proof. rewrite is_empty_spec. intros H x e. now rewrite <- find_spec, H. Qed. Lemma add_1 m x y e : E.eq x y -> MapsTo y e (add x e m). Proof. intros <-. rewrite <-find_spec. apply add_spec1. Qed. Lemma add_2 m x y e e' : ~ E.eq x y -> MapsTo y e m -> MapsTo y e (add x e' m). Proof. intro. now rewrite <- !find_spec, add_spec2. Qed. Lemma add_3 m x y e e' : ~ E.eq x y -> MapsTo y e (add x e' m) -> MapsTo y e m. Proof. intro. rewrite <- !find_spec, add_spec2; trivial. Qed. Lemma remove_1 m x y : E.eq x y -> ~ In y (remove x m). Proof. intros <-. apply not_in_find. apply remove_spec1. Qed. Lemma remove_2 m x y e : ~ E.eq x y -> MapsTo y e m -> MapsTo y e (remove x m). Proof. intro. now rewrite <- !find_spec, remove_spec2. Qed. Lemma remove_3bis m x y e : find y (remove x m) = Some e -> find y m = Some e. Proof. destruct (E.eq_dec x y) as [<-|H]. - now rewrite remove_spec1. - now rewrite remove_spec2. Qed. Lemma remove_3 m x y e : MapsTo y e (remove x m) -> MapsTo y e m. Proof. rewrite <-!find_spec. apply remove_3bis. Qed. Lemma bindings_1 m x e : MapsTo x e m -> InA eq_key_elt (x,e) (bindings m). Proof. apply bindings_spec1. Qed. Lemma bindings_2 m x e : InA eq_key_elt (x,e) (bindings m) -> MapsTo x e m. Proof. apply bindings_spec1. Qed. Lemma bindings_3w m : NoDupA eq_key (bindings m). Proof. apply bindings_spec2w. Qed. Lemma cardinal_1 m : cardinal m = length (bindings m). Proof. apply cardinal_spec. Qed. Lemma fold_1 m (A : Type) (i : A) (f : key -> elt -> A -> A) : fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (bindings m) i. Proof. apply fold_spec. Qed. Lemma equal_1 m m' cmp : Equivb cmp m m' -> equal cmp m m' = true. Proof. apply equal_spec. Qed. Lemma equal_2 m m' cmp : equal cmp m m' = true -> Equivb cmp m m'. Proof. apply equal_spec. Qed. End OldSpecs. Lemma map_1 {elt elt'}(m: t elt)(x:key)(e:elt)(f:elt->elt') : MapsTo x e m -> MapsTo x (f e) (map f m). Proof. rewrite <- !find_spec, map_spec. now intros ->. Qed. Lemma map_2 {elt elt'}(m: t elt)(x:key)(f:elt->elt') : In x (map f m) -> In x m. Proof. rewrite !in_find, map_spec. apply option_map_some. Qed. Lemma mapi_1 {elt elt'}(m: t elt)(x:key)(e:elt)(f:key->elt->elt') : MapsTo x e m -> exists y, E.eq y x /\ MapsTo x (f y e) (mapi f m). Proof. destruct (mapi_spec f m x) as (y,(Hy,Eq)). intro H. exists y; split; trivial. rewrite <-find_spec in *. now rewrite Eq, H. Qed. Lemma mapi_2 {elt elt'}(m: t elt)(x:key)(f:key->elt->elt') : In x (mapi f m) -> In x m. Proof. destruct (mapi_spec f m x) as (y,(Hy,Eq)). rewrite !in_find. intro H; contradict H. now rewrite Eq, H. Qed. (** The ancestor [map2] of the current [merge] was dealing with functions on datas only, not on keys. *) Definition map2 {elt elt' elt''} (f:option elt->option elt'->option elt'') := merge (fun _ => f). Lemma map2_1 {elt elt' elt''}(m: t elt)(m': t elt') (x:key)(f:option elt->option elt'->option elt'') : In x m \/ In x m' -> find x (map2 f m m') = f (find x m) (find x m'). Proof. intros. unfold map2. now destruct (merge_spec1 (fun _ => f) H) as (y,(_,->)). Qed. Lemma map2_2 {elt elt' elt''}(m: t elt)(m': t elt') (x:key)(f:option elt->option elt'->option elt'') : In x (map2 f m m') -> In x m \/ In x m'. Proof. apply merge_spec2. Qed. Hint Immediate MapsTo_1 mem_2 is_empty_2 map_2 mapi_2 add_3 remove_3 find_2 : map. Hint Resolve mem_1 is_empty_1 is_empty_2 add_1 add_2 remove_1 remove_2 find_1 fold_1 map_1 mapi_1 mapi_2 : map. (** ** Specifications written using equivalences *) Section IffSpec. Variable elt: Type. Implicit Type m: t elt. Implicit Type x y z: key. Implicit Type e: elt. Lemma in_iff m x y : E.eq x y -> (In x m <-> In y m). Proof. now intros ->. Qed. Lemma mapsto_iff m x y e : E.eq x y -> (MapsTo x e m <-> MapsTo y e m). Proof. now intros ->. Qed. Lemma mem_in_iff m x : In x m <-> mem x m = true. Proof. symmetry. apply mem_spec. Qed. Lemma not_mem_in_iff m x : ~In x m <-> mem x m = false. Proof. rewrite mem_in_iff; destruct (mem x m); intuition. Qed. Lemma mem_find m x : mem x m = true <-> find x m <> None. Proof. rewrite <- mem_in_iff. apply in_find. Qed. Lemma not_mem_find m x : mem x m = false <-> find x m = None. Proof. rewrite <- not_mem_in_iff. apply not_in_find. Qed. Lemma In_dec m x : { In x m } + { ~ In x m }. Proof. generalize (mem_in_iff m x). destruct (mem x m); [left|right]; intuition. Qed. Lemma find_mapsto_iff m x e : MapsTo x e m <-> find x m = Some e. Proof. symmetry. apply find_spec. Qed. Lemma equal_iff m m' cmp : Equivb cmp m m' <-> equal cmp m m' = true. Proof. symmetry. apply equal_spec. Qed. Lemma empty_mapsto_iff x e : MapsTo x e empty <-> False. Proof. rewrite <- find_spec, empty_spec. now split. Qed. Lemma not_in_empty x : ~In x (@empty elt). Proof. intros (e,H). revert H. apply empty_mapsto_iff. Qed. Lemma empty_in_iff x : In x (@empty elt) <-> False. Proof. split; [ apply not_in_empty | destruct 1 ]. Qed. Lemma is_empty_iff m : Empty m <-> is_empty m = true. Proof. split; [apply is_empty_1 | apply is_empty_2 ]. Qed. Lemma add_mapsto_iff m x y e e' : MapsTo y e' (add x e m) <-> (E.eq x y /\ e=e') \/ (~E.eq x y /\ MapsTo y e' m). Proof. split. - intros H. destruct (E.eq_dec x y); [left|right]; split; trivial. + symmetry. apply (mapsto_fun H); auto with map. + now apply add_3 with x e. - destruct 1 as [(H,H')|(H,H')]; subst; auto with map. Qed. Lemma add_mapsto_new m x y e e' : ~In x m -> MapsTo y e' (add x e m) <-> (E.eq x y /\ e=e') \/ MapsTo y e' m. Proof. intros. rewrite add_mapsto_iff. intuition. right; split; trivial. contradict H. exists e'. now rewrite H. Qed. Lemma in_add m x y e : In y m -> In y (add x e m). Proof. destruct (E.eq_dec x y) as [<-|H']. - now rewrite !in_find, add_spec1. - now rewrite !in_find, add_spec2. Qed. Lemma add_in_iff m x y e : In y (add x e m) <-> E.eq x y \/ In y m. Proof. split. - intros H. destruct (E.eq_dec x y); [now left|right]. rewrite in_find, add_spec2 in H; trivial. now apply in_find. - intros [<-|H]. + exists e. now apply add_1. + now apply in_add. Qed. Lemma add_neq_mapsto_iff m x y e e' : ~ E.eq x y -> (MapsTo y e' (add x e m) <-> MapsTo y e' m). Proof. split; [apply add_3|apply add_2]; auto. Qed. Lemma add_neq_in_iff m x y e : ~ E.eq x y -> (In y (add x e m) <-> In y m). Proof. split; intros (e',H0); exists e'. - now apply add_3 with x e. - now apply add_2. Qed. Lemma remove_mapsto_iff m x y e : MapsTo y e (remove x m) <-> ~E.eq x y /\ MapsTo y e m. Proof. split; [split|destruct 1]. - intro E. revert H. now rewrite <-E, <- find_spec, remove_spec1. - now apply remove_3 with x. - now apply remove_2. Qed. Lemma remove_in_iff m x y : In y (remove x m) <-> ~E.eq x y /\ In y m. Proof. unfold In; split; [ intros (e,H) | intros (E,(e,H)) ]. - apply remove_mapsto_iff in H. destruct H; split; trivial. now exists e. - exists e. now apply remove_2. Qed. Lemma remove_neq_mapsto_iff : forall m x y e, ~ E.eq x y -> (MapsTo y e (remove x m) <-> MapsTo y e m). Proof. split; [apply remove_3|apply remove_2]; auto. Qed. Lemma remove_neq_in_iff : forall m x y, ~ E.eq x y -> (In y (remove x m) <-> In y m). Proof. split; intros (e',H0); exists e'. - now apply remove_3 with x. - now apply remove_2. Qed. Lemma bindings_mapsto_iff m x e : MapsTo x e m <-> InA eq_key_elt (x,e) (bindings m). Proof. symmetry. apply bindings_spec1. Qed. Lemma bindings_in_iff m x : In x m <-> exists e, InA eq_key_elt (x,e) (bindings m). Proof. unfold In; split; intros (e,H); exists e; now apply bindings_spec1. Qed. End IffSpec. Lemma map_mapsto_iff {elt elt'} m x b (f : elt -> elt') : MapsTo x b (map f m) <-> exists a, b = f a /\ MapsTo x a m. Proof. rewrite <-find_spec, map_spec. setoid_rewrite <- find_spec. destruct (find x m); simpl; split. - injection 1. now exists e. - intros (a,(->,H)). now injection H as ->. - discriminate. - intros (a,(_,H)); discriminate. Qed. Lemma map_in_iff {elt elt'} m x (f : elt -> elt') : In x (map f m) <-> In x m. Proof. rewrite !in_find, map_spec. apply option_map_some. Qed. Lemma mapi_in_iff {elt elt'} m x (f:key->elt->elt') : In x (mapi f m) <-> In x m. Proof. rewrite !in_find. destruct (mapi_spec f m x) as (y,(_,->)). apply option_map_some. Qed. (** Unfortunately, we don't have simple equivalences for [mapi] and [MapsTo]. The only correct one needs compatibility of [f]. *) Lemma mapi_inv {elt elt'} m x b (f : key -> elt -> elt') : MapsTo x b (mapi f m) -> exists a y, E.eq y x /\ b = f y a /\ MapsTo x a m. Proof. rewrite <- find_spec. setoid_rewrite <- find_spec. destruct (mapi_spec f m x) as (y,(E,->)). destruct (find x m); simpl. - injection 1 as <-. now exists e, y. - discriminate. Qed. Lemma mapi_spec' {elt elt'} (f:key->elt->elt') : Proper (E.eq==>Logic.eq==>Logic.eq) f -> forall m x, find x (mapi f m) = option_map (f x) (find x m). Proof. intros. destruct (mapi_spec f m x) as (y,(Hy,->)). destruct (find x m); simpl; trivial. now rewrite Hy. Qed. Lemma mapi_1bis {elt elt'} m x e (f:key->elt->elt') : Proper (E.eq==>Logic.eq==>Logic.eq) f -> MapsTo x e m -> MapsTo x (f x e) (mapi f m). Proof. intros. destruct (mapi_1 f H0) as (y,(->,H2)). trivial. Qed. Lemma mapi_mapsto_iff {elt elt'} m x b (f:key->elt->elt') : Proper (E.eq==>Logic.eq==>Logic.eq) f -> (MapsTo x b (mapi f m) <-> exists a, b = f x a /\ MapsTo x a m). Proof. rewrite <-find_spec. setoid_rewrite <-find_spec. intros Pr. rewrite mapi_spec' by trivial. destruct (find x m); simpl; split. - injection 1 as <-. now exists e. - intros (a,(->,H)). now injection H as <-. - discriminate. - intros (a,(_,H)). discriminate. Qed. (** Things are even worse for [merge] : we don't try to state any equivalence, see instead boolean results below. *) (** Useful tactic for simplifying expressions like [In y (add x e (remove z m))] *) Ltac map_iff := repeat (progress ( rewrite add_mapsto_iff || rewrite add_in_iff || rewrite remove_mapsto_iff || rewrite remove_in_iff || rewrite empty_mapsto_iff || rewrite empty_in_iff || rewrite map_mapsto_iff || rewrite map_in_iff || rewrite mapi_in_iff)). (** ** Specifications written using boolean predicates *) Section BoolSpec. Lemma mem_find_b {elt}(m:t elt)(x:key) : mem x m = if find x m then true else false. Proof. apply eq_bool_alt. rewrite mem_find. destruct (find x m). - now split. - split; (discriminate || now destruct 1). Qed. Variable elt elt' elt'' : Type. Implicit Types m : t elt. Implicit Types x y z : key. Implicit Types e : elt. Lemma mem_b m x y : E.eq x y -> mem x m = mem y m. Proof. now intros ->. Qed. Lemma find_o m x y : E.eq x y -> find x m = find y m. Proof. now intros ->. Qed. Lemma empty_o x : find x (@empty elt) = None. Proof. apply empty_spec. Qed. Lemma empty_a x : mem x (@empty elt) = false. Proof. apply not_mem_find. apply empty_spec. Qed. Lemma add_eq_o m x y e : E.eq x y -> find y (add x e m) = Some e. Proof. intros <-. apply add_spec1. Qed. Lemma add_neq_o m x y e : ~ E.eq x y -> find y (add x e m) = find y m. Proof. apply add_spec2. Qed. Hint Resolve add_neq_o : map. Lemma add_o m x y e : find y (add x e m) = if E.eq_dec x y then Some e else find y m. Proof. destruct (E.eq_dec x y); auto with map. Qed. Lemma add_eq_b m x y e : E.eq x y -> mem y (add x e m) = true. Proof. intros <-. apply mem_spec, add_in_iff. now left. Qed. Lemma add_neq_b m x y e : ~E.eq x y -> mem y (add x e m) = mem y m. Proof. intros. now rewrite !mem_find_b, add_neq_o. Qed. Lemma add_b m x y e : mem y (add x e m) = eqb x y || mem y m. Proof. rewrite !mem_find_b, add_o. unfold eqb. now destruct (E.eq_dec x y). Qed. Lemma remove_eq_o m x y : E.eq x y -> find y (remove x m) = None. Proof. intros ->. apply remove_spec1. Qed. Lemma remove_neq_o m x y : ~ E.eq x y -> find y (remove x m) = find y m. Proof. apply remove_spec2. Qed. Hint Resolve remove_eq_o remove_neq_o : map. Lemma remove_o m x y : find y (remove x m) = if E.eq_dec x y then None else find y m. Proof. destruct (E.eq_dec x y); auto with map. Qed. Lemma remove_eq_b m x y : E.eq x y -> mem y (remove x m) = false. Proof. intros <-. now rewrite mem_find_b, remove_eq_o. Qed. Lemma remove_neq_b m x y : ~ E.eq x y -> mem y (remove x m) = mem y m. Proof. intros. now rewrite !mem_find_b, remove_neq_o. Qed. Lemma remove_b m x y : mem y (remove x m) = negb (eqb x y) && mem y m. Proof. rewrite !mem_find_b, remove_o; unfold eqb. now destruct (E.eq_dec x y). Qed. Lemma map_o m x (f:elt->elt') : find x (map f m) = option_map f (find x m). Proof. apply map_spec. Qed. Lemma map_b m x (f:elt->elt') : mem x (map f m) = mem x m. Proof. rewrite !mem_find_b, map_o. now destruct (find x m). Qed. Lemma mapi_b m x (f:key->elt->elt') : mem x (mapi f m) = mem x m. Proof. apply eq_bool_alt; rewrite !mem_spec. apply mapi_in_iff. Qed. Lemma mapi_o m x (f:key->elt->elt') : Proper (E.eq==>Logic.eq==>Logic.eq) f -> find x (mapi f m) = option_map (f x) (find x m). Proof. intros; now apply mapi_spec'. Qed. Lemma merge_spec1' (f:key->option elt->option elt'->option elt'') : Proper (E.eq==>Logic.eq==>Logic.eq==>Logic.eq) f -> forall (m:t elt)(m':t elt') x, In x m \/ In x m' -> find x (merge f m m') = f x (find x m) (find x m'). Proof. intros Hf m m' x H. now destruct (merge_spec1 f H) as (y,(->,->)). Qed. Lemma merge_spec1_none (f:key->option elt->option elt'->option elt'') : (forall x, f x None None = None) -> forall (m: t elt)(m': t elt') x, exists y, E.eq y x /\ find x (merge f m m') = f y (find x m) (find x m'). Proof. intros Hf m m' x. destruct (find x m) as [e|] eqn:Hm. - assert (H : In x m \/ In x m') by (left; exists e; now apply find_spec). destruct (merge_spec1 f H) as (y,(Hy,->)). exists y; split; trivial. now rewrite Hm. - destruct (find x m') as [e|] eqn:Hm'. + assert (H : In x m \/ In x m') by (right; exists e; now apply find_spec). destruct (merge_spec1 f H) as (y,(Hy,->)). exists y; split; trivial. now rewrite Hm, Hm'. + exists x. split. reflexivity. rewrite Hf. apply not_in_find. intro H. apply merge_spec2 in H. apply not_in_find in Hm. apply not_in_find in Hm'. intuition. Qed. Lemma merge_spec1'_none (f:key->option elt->option elt'->option elt'') : Proper (E.eq==>Logic.eq==>Logic.eq==>Logic.eq) f -> (forall x, f x None None = None) -> forall (m: t elt)(m': t elt') x, find x (merge f m m') = f x (find x m) (find x m'). Proof. intros Hf Hf' m m' x. now destruct (merge_spec1_none Hf' m m' x) as (y,(->,->)). Qed. Lemma bindings_o : forall m x, find x m = findA (eqb x) (bindings m). Proof. intros. rewrite eq_option_alt. intro e. rewrite <- find_mapsto_iff, bindings_mapsto_iff. unfold eqb. rewrite <- findA_NoDupA; dintuition; try apply bindings_3w; eauto. Qed. Lemma bindings_b : forall m x, mem x m = existsb (fun p => eqb x (fst p)) (bindings m). Proof. intros. apply eq_bool_alt. rewrite mem_spec, bindings_in_iff, existsb_exists. split. - intros (e,H). rewrite InA_alt in H. destruct H as ((k,e'),((H1,H2),H')); simpl in *; subst e'. exists (k, e); split; trivial. simpl. now apply eqb_eq. - intros ((k,e),(H,H')); simpl in *. apply eqb_eq in H'. exists e. rewrite InA_alt. exists (k,e). now repeat split. Qed. End BoolSpec. Section Equalities. Variable elt:Type. (** A few basic equalities *) Lemma eq_empty (m: t elt) : m == empty <-> is_empty m = true. Proof. unfold Equal. rewrite is_empty_spec. now setoid_rewrite empty_spec. Qed. Lemma add_id (m: t elt) x e : add x e m == m <-> find x m = Some e. Proof. split. - intros H. rewrite <- (H x). apply add_spec1. - intros H y. rewrite !add_o. now destruct E.eq_dec as [<-|E]. Qed. Lemma add_add_1 (m: t elt) x e : add x e (add x e m) == add x e m. Proof. intros y. rewrite !add_o. destruct E.eq_dec; auto. Qed. Lemma add_add_2 (m: t elt) x x' e e' : ~E.eq x x' -> add x e (add x' e' m) == add x' e' (add x e m). Proof. intros H y. rewrite !add_o. do 2 destruct E.eq_dec; auto. elim H. now transitivity y. Qed. Lemma remove_id (m: t elt) x : remove x m == m <-> ~In x m. Proof. rewrite not_in_find. split. - intros H. rewrite <- (H x). apply remove_spec1. - intros H y. rewrite !remove_o. now destruct E.eq_dec as [<-|E]. Qed. Lemma remove_remove_1 (m: t elt) x : remove x (remove x m) == remove x m. Proof. intros y. rewrite !remove_o. destruct E.eq_dec; auto. Qed. Lemma remove_remove_2 (m: t elt) x x' : remove x (remove x' m) == remove x' (remove x m). Proof. intros y. rewrite !remove_o. do 2 destruct E.eq_dec; auto. Qed. Lemma remove_add_1 (m: t elt) x e : remove x (add x e m) == remove x m. Proof. intro y. rewrite !remove_o, !add_o. now destruct E.eq_dec. Qed. Lemma remove_add_2 (m: t elt) x x' e : ~E.eq x x' -> remove x' (add x e m) == add x e (remove x' m). Proof. intros H y. rewrite !remove_o, !add_o. do 2 destruct E.eq_dec; auto. - elim H; now transitivity y. - symmetry. now apply remove_eq_o. - symmetry. now apply remove_neq_o. Qed. Lemma add_remove_1 (m: t elt) x e : add x e (remove x m) == add x e m. Proof. intro y. rewrite !add_o, !remove_o. now destruct E.eq_dec. Qed. (** Another characterisation of [Equal] *) Lemma Equal_mapsto_iff : forall m1 m2 : t elt, m1 == m2 <-> (forall k e, MapsTo k e m1 <-> MapsTo k e m2). Proof. intros m1 m2. split; [intros Heq k e|intros Hiff]. rewrite 2 find_mapsto_iff, Heq. split; auto. intro k. rewrite eq_option_alt. intro e. rewrite <- 2 find_mapsto_iff; auto. Qed. (** * Relations between [Equal], [Equiv] and [Equivb]. *) (** First, [Equal] is [Equiv] with Leibniz on elements. *) Lemma Equal_Equiv : forall (m m' : t elt), m == m' <-> Equiv Logic.eq m m'. Proof. intros. rewrite Equal_mapsto_iff. split; intros. - split. + split; intros (e,Hin); exists e; [rewrite <- H|rewrite H]; auto. + intros; apply mapsto_fun with m k; auto; rewrite H; auto. - split; intros H'. + destruct H. assert (Hin : In k m') by (rewrite <- H; exists e; auto). destruct Hin as (e',He'). rewrite (H0 k e e'); auto. + destruct H. assert (Hin : In k m) by (rewrite H; exists e; auto). destruct Hin as (e',He'). rewrite <- (H0 k e' e); auto. Qed. (** [Equivb] and [Equiv] and equivalent when [eq_elt] and [cmp] are related. *) Section Cmp. Variable eq_elt : elt->elt->Prop. Variable cmp : elt->elt->bool. Definition compat_cmp := forall e e', cmp e e' = true <-> eq_elt e e'. Lemma Equiv_Equivb : compat_cmp -> forall m m', Equiv eq_elt m m' <-> Equivb cmp m m'. Proof. unfold Equivb, Equiv, Cmp; intuition. red in H; rewrite H; eauto. red in H; rewrite <-H; eauto. Qed. End Cmp. (** Composition of the two last results: relation between [Equal] and [Equivb]. *) Lemma Equal_Equivb : forall cmp, (forall e e', cmp e e' = true <-> e = e') -> forall (m m':t elt), m == m' <-> Equivb cmp m m'. Proof. intros; rewrite Equal_Equiv. apply Equiv_Equivb; auto. Qed. Lemma Equal_Equivb_eqdec : forall eq_elt_dec : (forall e e', { e = e' } + { e <> e' }), let cmp := fun e e' => if eq_elt_dec e e' then true else false in forall (m m':t elt), m == m' <-> Equivb cmp m m'. Proof. intros; apply Equal_Equivb. unfold cmp; clear cmp; intros. destruct eq_elt_dec; now intuition. Qed. End Equalities. (** * Results about [fold], [bindings], induction principles... *) Section Elt. Variable elt:Type. Definition Add x (e:elt) m m' := m' == (add x e m). Notation eqke := (@eq_key_elt elt). Notation eqk := (@eq_key elt). Instance eqk_equiv : Equivalence eqk. Proof. unfold eq_key. destruct E.eq_equiv. constructor; eauto. Qed. Instance eqke_equiv : Equivalence eqke. Proof. unfold eq_key_elt; split; repeat red; intuition; simpl in *; etransitivity; eauto. Qed. (** Complements about InA, NoDupA and findA *) Lemma InA_eqke_eqk k k' e e' l : E.eq k k' -> InA eqke (k,e) l -> InA eqk (k',e') l. Proof. intros Hk. rewrite 2 InA_alt. intros ((k'',e'') & (Hk'',He'') & H); simpl in *; subst e''. exists (k'',e); split; auto. red; simpl. now transitivity k. Qed. Lemma NoDupA_incl {A} (R R':relation A) : (forall x y, R x y -> R' x y) -> forall l, NoDupA R' l -> NoDupA R l. Proof. intros Incl. induction 1 as [ | a l E _ IH ]; constructor; auto. contradict E. revert E. rewrite 2 InA_alt. firstorder. Qed. Lemma NoDupA_eqk_eqke l : NoDupA eqk l -> NoDupA eqke l. Proof. apply NoDupA_incl. now destruct 1. Qed. Lemma findA_rev l k : NoDupA eqk l -> findA (eqb k) l = findA (eqb k) (rev l). Proof. intros H. apply eq_option_alt. intros e. unfold eqb. rewrite <- !findA_NoDupA, InA_rev; eauto with map. reflexivity. change (NoDupA eqk (rev l)). apply NoDupA_rev; auto using eqk_equiv. Qed. (** * Bindings *) Lemma bindings_Empty (m:t elt) : Empty m <-> bindings m = nil. Proof. unfold Empty. split; intros H. - assert (H' : forall a, ~ List.In a (bindings m)). { intros (k,e) H'. apply (H k e). rewrite bindings_mapsto_iff, InA_alt. exists (k,e); repeat split; auto with map. } destruct (bindings m) as [|p l]; trivial. destruct (H' p); simpl; auto. - intros x e. rewrite bindings_mapsto_iff, InA_alt. rewrite H. now intros (y,(E,H')). Qed. Lemma bindings_empty : bindings (@empty elt) = nil. Proof. rewrite <-bindings_Empty; apply empty_1. Qed. (** * Conversions between maps and association lists. *) Definition uncurry {U V W : Type} (f : U -> V -> W) : U*V -> W := fun p => f (fst p) (snd p). Definition of_list := List.fold_right (uncurry (@add _)) (@empty elt). Definition to_list := bindings. Lemma of_list_1 : forall l k e, NoDupA eqk l -> (MapsTo k e (of_list l) <-> InA eqke (k,e) l). Proof. induction l as [|(k',e') l IH]; simpl; intros k e Hnodup. - rewrite empty_mapsto_iff, InA_nil; intuition. - unfold uncurry; simpl. inversion_clear Hnodup as [| ? ? Hnotin Hnodup']. specialize (IH k e Hnodup'); clear Hnodup'. rewrite add_mapsto_iff, InA_cons, <- IH. unfold eq_key_elt at 1; simpl. split; destruct 1 as [H|H]; try (intuition;fail). destruct (E.eq_dec k k'); [left|right]; split; auto with map. contradict Hnotin. apply InA_eqke_eqk with k e; intuition. Qed. Lemma of_list_1b : forall l k, NoDupA eqk l -> find k (of_list l) = findA (eqb k) l. Proof. induction l as [|(k',e') l IH]; simpl; intros k Hnodup. apply empty_o. unfold uncurry; simpl. inversion_clear Hnodup as [| ? ? Hnotin Hnodup']. specialize (IH k Hnodup'); clear Hnodup'. rewrite add_o, IH, eqb_sym. unfold eqb; now destruct E.eq_dec. Qed. Lemma of_list_2 : forall l, NoDupA eqk l -> equivlistA eqke l (to_list (of_list l)). Proof. intros l Hnodup (k,e). rewrite <- bindings_mapsto_iff, of_list_1; intuition. Qed. Lemma of_list_3 : forall s, Equal (of_list (to_list s)) s. Proof. intros s k. rewrite of_list_1b, bindings_o; auto. apply bindings_3w. Qed. (** * Fold *) (** Alternative specification via [fold_right] *) Lemma fold_spec_right m (A:Type)(i:A)(f : key -> elt -> A -> A) : fold f m i = List.fold_right (uncurry f) i (rev (bindings m)). Proof. rewrite fold_1. symmetry. apply fold_left_rev_right. Qed. (** ** Induction principles about fold contributed by S. Lescuyer *) (** In the following lemma, the step hypothesis is deliberately restricted to the precise map m we are considering. *) Lemma fold_rec : forall (A:Type)(P : t elt -> A -> Type)(f : key -> elt -> A -> A), forall (i:A)(m:t elt), (forall m, Empty m -> P m i) -> (forall k e a m' m'', MapsTo k e m -> ~In k m' -> Add k e m' m'' -> P m' a -> P m'' (f k e a)) -> P m (fold f m i). Proof. intros A P f i m Hempty Hstep. rewrite fold_spec_right. set (F:=uncurry f). set (l:=rev (bindings m)). assert (Hstep' : forall k e a m' m'', InA eqke (k,e) l -> ~In k m' -> Add k e m' m'' -> P m' a -> P m'' (F (k,e) a)). { intros k e a m' m'' H ? ? ?; eapply Hstep; eauto. revert H; unfold l; rewrite InA_rev, bindings_mapsto_iff; auto with *. } assert (Hdup : NoDupA eqk l). { unfold l. apply NoDupA_rev; try red; unfold eq_key ; eauto with *. apply bindings_3w. } assert (Hsame : forall k, find k m = findA (eqb k) l). { intros k. unfold l. rewrite bindings_o, findA_rev; auto. apply bindings_3w. } clearbody l. clearbody F. clear Hstep f. revert m Hsame. induction l. - (* empty *) intros m Hsame; simpl. apply Hempty. intros k e. rewrite find_mapsto_iff, Hsame; simpl; discriminate. - (* step *) intros m Hsame; destruct a as (k,e); simpl. apply Hstep' with (of_list l); auto. + rewrite InA_cons; left; red; auto with map. + inversion_clear Hdup. contradict H. destruct H as (e',He'). apply InA_eqke_eqk with k e'; auto with map. rewrite <- of_list_1; auto. + intro k'. rewrite Hsame, add_o, of_list_1b. simpl. rewrite eqb_sym. unfold eqb. now destruct E.eq_dec. inversion_clear Hdup; auto with map. + apply IHl. * intros; eapply Hstep'; eauto. * inversion_clear Hdup; auto. * intros; apply of_list_1b. inversion_clear Hdup; auto. Qed. (** Same, with [empty] and [add] instead of [Empty] and [Add]. In this case, [P] must be compatible with equality of sets *) Theorem fold_rec_bis : forall (A:Type)(P : t elt -> A -> Type)(f : key -> elt -> A -> A), forall (i:A)(m:t elt), (forall m m' a, Equal m m' -> P m a -> P m' a) -> (P empty i) -> (forall k e a m', MapsTo k e m -> ~In k m' -> P m' a -> P (add k e m') (f k e a)) -> P m (fold f m i). Proof. intros A P f i m Pmorphism Pempty Pstep. apply fold_rec; intros. apply Pmorphism with empty; auto. intro k. rewrite empty_o. case_eq (find k m0); auto; intros e'; rewrite <- find_mapsto_iff. intro H'; elim (H k e'); auto. apply Pmorphism with (add k e m'); try intro; auto. Qed. Lemma fold_rec_nodep : forall (A:Type)(P : A -> Type)(f : key -> elt -> A -> A)(i:A)(m:t elt), P i -> (forall k e a, MapsTo k e m -> P a -> P (f k e a)) -> P (fold f m i). Proof. intros; apply fold_rec_bis with (P:=fun _ => P); auto. Qed. (** [fold_rec_weak] is a weaker principle than [fold_rec_bis] : the step hypothesis must here be applicable anywhere. At the same time, it looks more like an induction principle, and hence can be easier to use. *) Lemma fold_rec_weak : forall (A:Type)(P : t elt -> A -> Type)(f : key -> elt -> A -> A)(i:A), (forall m m' a, Equal m m' -> P m a -> P m' a) -> P empty i -> (forall k e a m, ~In k m -> P m a -> P (add k e m) (f k e a)) -> forall m, P m (fold f m i). Proof. intros; apply fold_rec_bis; auto. Qed. Lemma fold_rel : forall (A B:Type)(R : A -> B -> Type) (f : key -> elt -> A -> A)(g : key -> elt -> B -> B)(i : A)(j : B) (m : t elt), R i j -> (forall k e a b, MapsTo k e m -> R a b -> R (f k e a) (g k e b)) -> R (fold f m i) (fold g m j). Proof. intros A B R f g i j m Rempty Rstep. rewrite 2 fold_spec_right. set (l:=rev (bindings m)). assert (Rstep' : forall k e a b, InA eqke (k,e) l -> R a b -> R (f k e a) (g k e b)). { intros; apply Rstep; auto. rewrite bindings_mapsto_iff, <- InA_rev; auto with map. } clearbody l; clear Rstep m. induction l; simpl; auto. apply Rstep'; auto. destruct a; simpl; rewrite InA_cons; left; red; auto with map. Qed. (** From the induction principle on [fold], we can deduce some general induction principles on maps. *) Lemma map_induction : forall P : t elt -> Type, (forall m, Empty m -> P m) -> (forall m m', P m -> forall x e, ~In x m -> Add x e m m' -> P m') -> forall m, P m. Proof. intros. apply (@fold_rec _ (fun s _ => P s) (fun _ _ _ => tt) tt m); eauto. Qed. Lemma map_induction_bis : forall P : t elt -> Type, (forall m m', Equal m m' -> P m -> P m') -> P empty -> (forall x e m, ~In x m -> P m -> P (add x e m)) -> forall m, P m. Proof. intros. apply (@fold_rec_bis _ (fun s _ => P s) (fun _ _ _ => tt) tt m); eauto. Qed. (** [fold] can be used to reconstruct the same initial set. *) Lemma fold_identity : forall m : t elt, Equal (fold (@add _) m empty) m. Proof. intros. apply fold_rec with (P:=fun m acc => Equal acc m); auto with map. intros m' Heq k'. rewrite empty_o. case_eq (find k' m'); auto; intros e'; rewrite <- find_mapsto_iff. intro; elim (Heq k' e'); auto. intros k e a m' m'' _ _ Hadd Heq k'. red in Heq. rewrite Hadd, 2 add_o, Heq; auto. Qed. Section Fold_More. (** ** Additional properties of fold *) (** When a function [f] is compatible and allows transpositions, we can compute [fold f] in any order. *) Variables (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA). Lemma fold_Empty (f:key->elt->A->A) : forall m i, Empty m -> eqA (fold f m i) i. Proof. intros. apply fold_rec_nodep with (P:=fun a => eqA a i). reflexivity. intros. elim (H k e); auto. Qed. Lemma fold_init (f:key->elt->A->A) : Proper (E.eq==>eq==>eqA==>eqA) f -> forall m i i', eqA i i' -> eqA (fold f m i) (fold f m i'). Proof. intros Hf m i i' Hi. apply fold_rel with (R:=eqA); auto. intros. now apply Hf. Qed. (** Transpositions of f (a.k.a diamond property). Could we swap two sequential calls to f, i.e. do we have: f k e (f k' e' a) == f k' e' (f k e a) First, we do no need this equation for all keys, but only when k and k' aren't equal, as suggested by Pierre Castéran. Think for instance of [f] being [M.add] : in general, we don't have [M.add k e (M.add k e' m) == M.add k e' (M.add k e m)]. Fortunately, we will never encounter this situation during a real [fold], since the keys received by this [fold] are unique. NB: without this condition, this condition would be [SetoidList.transpose2]. Secondly, instead of the equation above, we now use a statement with more basic equalities, allowing to prove [fold_commutes] even when [f] isn't a morphism. NB: When [f] is a morphism, [Diamond f] gives back the equation above. *) Definition Diamond (f:key->elt->A->A) := forall k k' e e' a b b', ~E.eq k k' -> eqA (f k e a) b -> eqA (f k' e' a) b' -> eqA (f k e b') (f k' e' b). Lemma fold_commutes (f:key->elt->A->A) : Diamond f -> forall i m k e, ~In k m -> eqA (fold f m (f k e i)) (f k e (fold f m i)). Proof. intros Hf i m k e H. apply fold_rel with (R:= fun a b => eqA a (f k e b)); auto. - reflexivity. - intros k' e' b a Hm E. apply Hf with a; try easy. contradict H; rewrite <- H. now exists e'. Qed. Hint Resolve NoDupA_eqk_eqke NoDupA_rev bindings_3w : map. Lemma fold_Proper (f:key->elt->A->A) : Proper (E.eq==>eq==>eqA==>eqA) f -> Diamond f -> Proper (Equal==>eqA==>eqA) (fold f). Proof. intros Hf Hf' m1 m2 Hm i j Hi. rewrite 2 fold_spec_right. assert (NoDupA eqk (rev (bindings m1))) by (auto with * ). assert (NoDupA eqk (rev (bindings m2))) by (auto with * ). apply fold_right_equivlistA_restr2 with (R:=complement eqk)(eqA:=eqke) ; auto with *. - intros (k1,e1) (k2,e2) (Hk,He) a1 a2 Ha; simpl in *. now apply Hf. - unfold complement, eq_key, eq_key_elt; repeat red. intuition eauto with map. - intros (k,e) (k',e') z z' h h'; unfold eq_key, uncurry;simpl; auto. rewrite h'. eapply Hf'; now eauto. - rewrite <- NoDupA_altdef; auto. - intros (k,e). rewrite 2 InA_rev, <- 2 bindings_mapsto_iff, 2 find_mapsto_iff, Hm; auto with *. Qed. Lemma fold_Equal (f:key->elt->A->A) : Proper (E.eq==>eq==>eqA==>eqA) f -> Diamond f -> forall m1 m2 i, Equal m1 m2 -> eqA (fold f m1 i) (fold f m2 i). Proof. intros. now apply fold_Proper. Qed. Lemma fold_Add (f:key->elt->A->A) : Proper (E.eq==>eq==>eqA==>eqA) f -> Diamond f -> forall m1 m2 k e i, ~In k m1 -> Add k e m1 m2 -> eqA (fold f m2 i) (f k e (fold f m1 i)). Proof. intros Hf Hf' m1 m2 k e i Hm1 Hm2. rewrite 2 fold_spec_right. set (f':=uncurry f). change (f k e (fold_right f' i (rev (bindings m1)))) with (f' (k,e) (fold_right f' i (rev (bindings m1)))). assert (NoDupA eqk (rev (bindings m1))) by (auto with * ). assert (NoDupA eqk (rev (bindings m2))) by (auto with * ). apply fold_right_add_restr with (R:=complement eqk)(eqA:=eqke); auto with *. - intros (k1,e1) (k2,e2) (Hk,He) a a' Ha; unfold f'; simpl in *. now apply Hf. - unfold complement, eq_key_elt, eq_key; repeat red; intuition eauto with map. - intros (k1,e1) (k2,e2) z1 z2; unfold eq_key, f', uncurry; simpl. eapply Hf'; now eauto. - rewrite <- NoDupA_altdef; auto. - rewrite InA_rev, <- bindings_mapsto_iff by (auto with * ). firstorder. - intros (a,b). rewrite InA_cons, 2 InA_rev, <- 2 bindings_mapsto_iff, 2 find_mapsto_iff by (auto with * ). unfold eq_key_elt; simpl. rewrite Hm2, !find_spec, add_mapsto_new; intuition. Qed. Lemma fold_add (f:key->elt->A->A) : Proper (E.eq==>eq==>eqA==>eqA) f -> Diamond f -> forall m k e i, ~In k m -> eqA (fold f (add k e m) i) (f k e (fold f m i)). Proof. intros. now apply fold_Add. Qed. End Fold_More. (** * Cardinal *) Lemma cardinal_fold (m : t elt) : cardinal m = fold (fun _ _ => S) m 0. Proof. rewrite cardinal_1, fold_1. symmetry; apply fold_left_length; auto. Qed. Lemma cardinal_Empty : forall m : t elt, Empty m <-> cardinal m = 0. Proof. intros. rewrite cardinal_1, bindings_Empty. destruct (bindings m); intuition; discriminate. Qed. Lemma Equal_cardinal (m m' : t elt) : Equal m m' -> cardinal m = cardinal m'. Proof. intro. rewrite 2 cardinal_fold. apply fold_Equal with (eqA:=eq); try congruence; auto with map. Qed. Lemma cardinal_0 (m : t elt) : Empty m -> cardinal m = 0. Proof. intros; rewrite <- cardinal_Empty; auto. Qed. Lemma cardinal_S m m' x e : ~ In x m -> Add x e m m' -> cardinal m' = S (cardinal m). Proof. intros. rewrite 2 cardinal_fold. change S with ((fun _ _ => S) x e). apply fold_Add with (eqA:=eq); try congruence; auto with map. Qed. Lemma cardinal_inv_1 : forall m : t elt, cardinal m = 0 -> Empty m. Proof. intros; rewrite cardinal_Empty; auto. Qed. Hint Resolve cardinal_inv_1 : map. Lemma cardinal_inv_2 : forall m n, cardinal m = S n -> { p : key*elt | MapsTo (fst p) (snd p) m }. Proof. intros; rewrite M.cardinal_spec in *. generalize (bindings_mapsto_iff m). destruct (bindings m); try discriminate. exists p; auto. rewrite H0; destruct p; simpl; auto. constructor; red; auto with map. Qed. Lemma cardinal_inv_2b : forall m, cardinal m <> 0 -> { p : key*elt | MapsTo (fst p) (snd p) m }. Proof. intros. generalize (@cardinal_inv_2 m); destruct cardinal. elim H;auto. eauto. Qed. Lemma not_empty_mapsto (m : t elt) : ~Empty m -> exists k e, MapsTo k e m. Proof. intro. destruct (@cardinal_inv_2b m) as ((k,e),H'). contradict H. now apply cardinal_inv_1. exists k; now exists e. Qed. Lemma not_empty_in (m:t elt) : ~Empty m -> exists k, In k m. Proof. intro. destruct (not_empty_mapsto H) as (k,Hk). now exists k. Qed. (** * Additional notions over maps *) Definition Disjoint (m m' : t elt) := forall k, ~(In k m /\ In k m'). Definition Partition (m m1 m2 : t elt) := Disjoint m1 m2 /\ (forall k e, MapsTo k e m <-> MapsTo k e m1 \/ MapsTo k e m2). (** * Emulation of some functions lacking in the interface *) Definition filter (f : key -> elt -> bool)(m : t elt) := fold (fun k e m => if f k e then add k e m else m) m empty. Definition for_all (f : key -> elt -> bool)(m : t elt) := fold (fun k e b => if f k e then b else false) m true. Definition exists_ (f : key -> elt -> bool)(m : t elt) := fold (fun k e b => if f k e then true else b) m false. Definition partition (f : key -> elt -> bool)(m : t elt) := (filter f m, filter (fun k e => negb (f k e)) m). (** [update] adds to [m1] all the bindings of [m2]. It can be seen as an [union] operator which gives priority to its 2nd argument in case of binding conflit. *) Definition update (m1 m2 : t elt) := fold (@add _) m2 m1. (** [restrict] keeps from [m1] only the bindings whose key is in [m2]. It can be seen as an [inter] operator, with priority to its 1st argument in case of binding conflit. *) Definition restrict (m1 m2 : t elt) := filter (fun k _ => mem k m2) m1. (** [diff] erases from [m1] all bindings whose key is in [m2]. *) Definition diff (m1 m2 : t elt) := filter (fun k _ => negb (mem k m2)) m1. (** Properties of these abbreviations *) Lemma filter_iff (f : key -> elt -> bool) : Proper (E.eq==>eq==>eq) f -> forall m k e, MapsTo k e (filter f m) <-> MapsTo k e m /\ f k e = true. Proof. unfold filter. set (f':=fun k e m => if f k e then add k e m else m). intros Hf m. pattern m, (fold f' m empty). apply fold_rec. - intros m' Hm' k e. rewrite empty_mapsto_iff. intuition. elim (Hm' k e); auto. - intros k e acc m1 m2 Hke Hn Hadd IH k' e'. change (Equal m2 (add k e m1)) in Hadd; rewrite Hadd. unfold f'; simpl. rewrite add_mapsto_new by trivial. case_eq (f k e); intros Hfke; simpl; rewrite ?add_mapsto_iff, IH; clear IH; intuition. + rewrite <- Hfke; apply Hf; auto with map. + right. repeat split; trivial. contradict Hn. rewrite Hn. now exists e'. + assert (f k e = f k' e') by (apply Hf; auto). congruence. Qed. Lemma for_all_filter f m : for_all f m = is_empty (filter (fun k e => negb (f k e)) m). Proof. unfold for_all, filter. eapply fold_rel with (R:=fun x y => x = is_empty y). - symmetry. apply is_empty_iff. apply empty_1. - intros; subst. destruct (f k e); simpl; trivial. symmetry. apply not_true_is_false. rewrite is_empty_spec. intros H'. specialize (H' k). now rewrite add_spec1 in H'. Qed. Lemma exists_filter f m : exists_ f m = negb (is_empty (filter f m)). Proof. unfold for_all, filter. eapply fold_rel with (R:=fun x y => x = negb (is_empty y)). - symmetry. rewrite negb_false_iff. apply is_empty_iff. apply empty_1. - intros; subst. destruct (f k e); simpl; trivial. symmetry. rewrite negb_true_iff. apply not_true_is_false. rewrite is_empty_spec. intros H'. specialize (H' k). now rewrite add_spec1 in H'. Qed. Lemma for_all_iff f m : Proper (E.eq==>eq==>eq) f -> (for_all f m = true <-> (forall k e, MapsTo k e m -> f k e = true)). Proof. intros Hf. rewrite for_all_filter. rewrite <- is_empty_iff. unfold Empty. split; intros H k e; specialize (H k e); rewrite filter_iff in * by solve_proper; intuition. - destruct (f k e); auto. - now rewrite H0 in H2. Qed. Lemma exists_iff f m : Proper (E.eq==>eq==>eq) f -> (exists_ f m = true <-> (exists k e, MapsTo k e m /\ f k e = true)). Proof. intros Hf. rewrite exists_filter. rewrite negb_true_iff. rewrite <- not_true_iff_false, <- is_empty_iff. split. - intros H. apply not_empty_mapsto in H. now setoid_rewrite filter_iff in H. - unfold Empty. setoid_rewrite filter_iff; trivial. firstorder. Qed. Lemma Disjoint_alt : forall m m', Disjoint m m' <-> (forall k e e', MapsTo k e m -> MapsTo k e' m' -> False). Proof. unfold Disjoint; split. intros H k v v' H1 H2. apply H with k; split. exists v; trivial. exists v'; trivial. intros H k ((v,Hv),(v',Hv')). eapply H; eauto. Qed. Section Partition. Variable f : key -> elt -> bool. Hypothesis Hf : Proper (E.eq==>eq==>eq) f. Lemma partition_iff_1 : forall m m1 k e, m1 = fst (partition f m) -> (MapsTo k e m1 <-> MapsTo k e m /\ f k e = true). Proof. unfold partition; simpl; intros. subst m1. apply filter_iff; auto. Qed. Lemma partition_iff_2 : forall m m2 k e, m2 = snd (partition f m) -> (MapsTo k e m2 <-> MapsTo k e m /\ f k e = false). Proof. unfold partition; simpl; intros. subst m2. rewrite filter_iff. split; intros (H,H'); split; auto. destruct (f k e); simpl in *; auto. rewrite H'; auto. repeat red; intros. f_equal. apply Hf; auto. Qed. Lemma partition_Partition : forall m m1 m2, partition f m = (m1,m2) -> Partition m m1 m2. Proof. intros. split. rewrite Disjoint_alt. intros k e e'. rewrite (@partition_iff_1 m m1), (@partition_iff_2 m m2) by (rewrite H; auto). intros (U,V) (W,Z). rewrite <- (mapsto_fun U W) in Z; congruence. intros k e. rewrite (@partition_iff_1 m m1), (@partition_iff_2 m m2) by (rewrite H; auto). destruct (f k e); intuition. Qed. End Partition. Lemma Partition_In : forall m m1 m2 k, Partition m m1 m2 -> In k m -> {In k m1}+{In k m2}. Proof. intros m m1 m2 k Hm Hk. destruct (In_dec m1 k) as [H|H]; [left|right]; auto. destruct Hm as (Hm,Hm'). destruct Hk as (e,He); rewrite Hm' in He; destruct He. elim H; exists e; auto. exists e; auto. Defined. Lemma Disjoint_sym : forall m1 m2, Disjoint m1 m2 -> Disjoint m2 m1. Proof. intros m1 m2 H k (H1,H2). elim (H k); auto. Qed. Lemma Partition_sym : forall m m1 m2, Partition m m1 m2 -> Partition m m2 m1. Proof. intros m m1 m2 (H,H'); split. apply Disjoint_sym; auto. intros; rewrite H'; intuition. Qed. Lemma Partition_Empty : forall m m1 m2, Partition m m1 m2 -> (Empty m <-> (Empty m1 /\ Empty m2)). Proof. intros m m1 m2 (Hdisj,Heq). split. intro He. split; intros k e Hke; elim (He k e); rewrite Heq; auto. intros (He1,He2) k e Hke. rewrite Heq in Hke. destruct Hke. elim (He1 k e); auto. elim (He2 k e); auto. Qed. Lemma Partition_Add : forall m m' x e , ~In x m -> Add x e m m' -> forall m1 m2, Partition m' m1 m2 -> exists m3, (Add x e m3 m1 /\ Partition m m3 m2 \/ Add x e m3 m2 /\ Partition m m1 m3). Proof. unfold Partition. intros m m' x e Hn Hadd m1 m2 (Hdisj,Hor). assert (Heq : Equal m (remove x m')). { change (Equal m' (add x e m)) in Hadd. rewrite Hadd. intro k. rewrite remove_o, add_o. destruct E.eq_dec as [He|Hne]; auto. rewrite <- He, <- not_find_in_iff; auto. } assert (H : MapsTo x e m'). { change (Equal m' (add x e m)) in Hadd; rewrite Hadd. apply add_1; auto with map. } rewrite Hor in H; destruct H. - (* first case : x in m1 *) exists (remove x m1); left. split; [|split]. + (* add *) change (Equal m1 (add x e (remove x m1))). intro k. rewrite add_o, remove_o. destruct E.eq_dec as [He|Hne]; auto. rewrite <- He; apply find_1; auto. + (* disjoint *) intros k (H1,H2). elim (Hdisj k). split; auto. rewrite remove_in_iff in H1; destruct H1; auto. + (* mapsto *) intros k' e'. rewrite Heq, 2 remove_mapsto_iff, Hor. intuition. elim (Hdisj x); split; [exists e|exists e']; auto. apply MapsTo_1 with k'; auto with map. - (* second case : x in m2 *) exists (remove x m2); right. split; [|split]. + (* add *) change (Equal m2 (add x e (remove x m2))). intro k. rewrite add_o, remove_o. destruct E.eq_dec as [He|Hne]; auto. rewrite <- He; apply find_1; auto. + (* disjoint *) intros k (H1,H2). elim (Hdisj k). split; auto. rewrite remove_in_iff in H2; destruct H2; auto. + (* mapsto *) intros k' e'. rewrite Heq, 2 remove_mapsto_iff, Hor. intuition. elim (Hdisj x); split; [exists e'|exists e]; auto. apply MapsTo_1 with k'; auto with map. Qed. Lemma Partition_fold : forall (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA)(f:key->elt->A->A), Proper (E.eq==>eq==>eqA==>eqA) f -> Diamond eqA f -> forall m m1 m2 i, Partition m m1 m2 -> eqA (fold f m i) (fold f m1 (fold f m2 i)). Proof. intros A eqA st f Comp Tra. induction m as [m Hm|m m' IH k e Hn Hadd] using map_induction. - intros m1 m2 i Hp. rewrite (fold_Empty (eqA:=eqA)); auto. rewrite (Partition_Empty Hp) in Hm. destruct Hm. rewrite 2 (fold_Empty (eqA:=eqA)); auto. reflexivity. - intros m1 m2 i Hp. destruct (Partition_Add Hn Hadd Hp) as (m3,[(Hadd',Hp')|(Hadd',Hp')]). + (* fst case: m3 is (k,e)::m1 *) assert (~In k m3). { contradict Hn. destruct Hn as (e',He'). destruct Hp' as (Hp1,Hp2). exists e'. rewrite Hp2; auto. } transitivity (f k e (fold f m i)). apply fold_Add with (eqA:=eqA); auto. symmetry. transitivity (f k e (fold f m3 (fold f m2 i))). apply fold_Add with (eqA:=eqA); auto. apply Comp; auto with map. symmetry; apply IH; auto. + (* snd case: m3 is (k,e)::m2 *) assert (~In k m3). { contradict Hn. destruct Hn as (e',He'). destruct Hp' as (Hp1,Hp2). exists e'. rewrite Hp2; auto. } assert (~In k m1). { contradict Hn. destruct Hn as (e',He'). destruct Hp' as (Hp1,Hp2). exists e'. rewrite Hp2; auto. } transitivity (f k e (fold f m i)). apply fold_Add with (eqA:=eqA); auto. transitivity (f k e (fold f m1 (fold f m3 i))). apply Comp; auto using IH with map. transitivity (fold f m1 (f k e (fold f m3 i))). symmetry. apply fold_commutes with (eqA:=eqA); auto. apply fold_init with (eqA:=eqA); auto. symmetry. apply fold_Add with (eqA:=eqA); auto. Qed. Lemma Partition_cardinal : forall m m1 m2, Partition m m1 m2 -> cardinal m = cardinal m1 + cardinal m2. Proof. intros. rewrite (cardinal_fold m), (cardinal_fold m1). set (f:=fun (_:key)(_:elt)=>S). setoid_replace (fold f m 0) with (fold f m1 (fold f m2 0)). rewrite <- cardinal_fold. apply fold_rel with (R:=fun u v => u = v + cardinal m2); simpl; auto. apply Partition_fold with (eqA:=eq); compute; auto with map. congruence. Qed. Lemma Partition_partition : forall m m1 m2, Partition m m1 m2 -> let f := fun k (_:elt) => mem k m1 in Equal m1 (fst (partition f m)) /\ Equal m2 (snd (partition f m)). Proof. intros m m1 m2 Hm f. assert (Hf : Proper (E.eq==>eq==>eq) f). intros k k' Hk e e' _; unfold f; rewrite Hk; auto. set (m1':= fst (partition f m)). set (m2':= snd (partition f m)). split; rewrite Equal_mapsto_iff; intros k e. rewrite (@partition_iff_1 f Hf m m1') by auto. unfold f. rewrite <- mem_in_iff. destruct Hm as (Hm,Hm'). rewrite Hm'. intuition. exists e; auto. elim (Hm k); split; auto; exists e; auto. rewrite (@partition_iff_2 f Hf m m2') by auto. unfold f. rewrite <- not_mem_in_iff. destruct Hm as (Hm,Hm'). rewrite Hm'. intuition. elim (Hm k); split; auto; exists e; auto. elim H1; exists e; auto. Qed. Lemma update_mapsto_iff : forall m m' k e, MapsTo k e (update m m') <-> (MapsTo k e m' \/ (MapsTo k e m /\ ~In k m')). Proof. unfold update. intros m m'. pattern m', (fold (@add _) m' m). apply fold_rec. - intros m0 Hm0 k e. assert (~In k m0) by (intros (e0,He0); apply (Hm0 k e0); auto). intuition. elim (Hm0 k e); auto. - intros k e m0 m1 m2 _ Hn Hadd IH k' e'. change (Equal m2 (add k e m1)) in Hadd. rewrite Hadd, 2 add_mapsto_iff, IH, add_in_iff. clear IH. intuition. Qed. Lemma update_dec : forall m m' k e, MapsTo k e (update m m') -> { MapsTo k e m' } + { MapsTo k e m /\ ~In k m'}. Proof. intros m m' k e H. rewrite update_mapsto_iff in H. destruct (In_dec m' k) as [H'|H']; [left|right]; intuition. elim H'; exists e; auto. Defined. Lemma update_in_iff : forall m m' k, In k (update m m') <-> In k m \/ In k m'. Proof. intros m m' k. split. intros (e,H); rewrite update_mapsto_iff in H. destruct H; [right|left]; exists e; intuition. destruct (In_dec m' k) as [H|H]. destruct H as (e,H). intros _; exists e. rewrite update_mapsto_iff; left; auto. destruct 1 as [H'|H']; [|elim H; auto]. destruct H' as (e,H'). exists e. rewrite update_mapsto_iff; right; auto. Qed. Lemma diff_mapsto_iff : forall m m' k e, MapsTo k e (diff m m') <-> MapsTo k e m /\ ~In k m'. Proof. intros m m' k e. unfold diff. rewrite filter_iff. intuition. rewrite mem_1 in *; auto; discriminate. intros ? ? Hk _ _ _; rewrite Hk; auto. Qed. Lemma diff_in_iff : forall m m' k, In k (diff m m') <-> In k m /\ ~In k m'. Proof. intros m m' k. split. intros (e,H); rewrite diff_mapsto_iff in H. destruct H; split; auto. exists e; auto. intros ((e,H),H'); exists e; rewrite diff_mapsto_iff; auto. Qed. Lemma restrict_mapsto_iff : forall m m' k e, MapsTo k e (restrict m m') <-> MapsTo k e m /\ In k m'. Proof. intros m m' k e. unfold restrict. rewrite filter_iff. intuition. intros ? ? Hk _ _ _; rewrite Hk; auto. Qed. Lemma restrict_in_iff : forall m m' k, In k (restrict m m') <-> In k m /\ In k m'. Proof. intros m m' k. split. intros (e,H); rewrite restrict_mapsto_iff in H. destruct H; split; auto. exists e; auto. intros ((e,H),H'); exists e; rewrite restrict_mapsto_iff; auto. Qed. (** specialized versions analyzing only keys (resp. bindings) *) Definition filter_dom (f : key -> bool) := filter (fun k _ => f k). Definition filter_range (f : elt -> bool) := filter (fun _ => f). Definition for_all_dom (f : key -> bool) := for_all (fun k _ => f k). Definition for_all_range (f : elt -> bool) := for_all (fun _ => f). Definition exists_dom (f : key -> bool) := exists_ (fun k _ => f k). Definition exists_range (f : elt -> bool) := exists_ (fun _ => f). Definition partition_dom (f : key -> bool) := partition (fun k _ => f k). Definition partition_range (f : elt -> bool) := partition (fun _ => f). End Elt. Instance cardinal_m {elt} : Proper (Equal ==> Logic.eq) (@cardinal elt). Proof. intros m m'. apply Equal_cardinal. Qed. Instance Disjoint_m {elt} : Proper (Equal ==> Equal ==> iff) (@Disjoint elt). Proof. intros m1 m1' Hm1 m2 m2' Hm2. unfold Disjoint. split; intros. rewrite <- Hm1, <- Hm2; auto. rewrite Hm1, Hm2; auto. Qed. Instance Partition_m {elt} : Proper (Equal ==> Equal ==> Equal ==> iff) (@Partition elt). Proof. intros m1 m1' Hm1 m2 m2' Hm2 m3 m3' Hm3. unfold Partition. rewrite <- Hm2, <- Hm3. split; intros (H,H'); split; auto; intros. rewrite <- Hm1, <- Hm2, <- Hm3; auto. rewrite Hm1, Hm2, Hm3; auto. Qed. (* Instance filter_m0 {elt} (f:key->elt->bool) : Proper (E.eq==>Logic.eq==>Logic.eq) f -> Proper (Equal==>Equal) (filter f). Proof. intros Hf m m' Hm. apply Equal_mapsto_iff. intros. now rewrite !filter_iff, Hm. Qed. *) Instance filter_m {elt} : Proper ((E.eq==>Logic.eq==>Logic.eq)==>Equal==>Equal) (@filter elt). Proof. intros f f' Hf m m' Hm. unfold filter. rewrite 2 fold_spec_right. set (l := rev (bindings m)). set (l' := rev (bindings m')). set (op := fun (f:key->elt->bool) => uncurry (fun k e acc => if f k e then add k e acc else acc)). change (Equal (fold_right (op f) empty l) (fold_right (op f') empty l')). assert (Hl : NoDupA eq_key l). { apply NoDupA_rev. apply eqk_equiv. apply bindings_spec2w. } assert (Hl' : NoDupA eq_key l'). { apply NoDupA_rev. apply eqk_equiv. apply bindings_spec2w. } assert (H : PermutationA eq_key_elt l l'). { apply NoDupA_equivlistA_PermutationA. - apply eqke_equiv. - now apply NoDupA_eqk_eqke. - now apply NoDupA_eqk_eqke. - intros (k,e); unfold l, l'. rewrite 2 InA_rev, 2 bindings_spec1. rewrite Equal_mapsto_iff in Hm. apply Hm. } destruct (PermutationA_decompose (eqke_equiv _) H) as (l0,(P,E)). transitivity (fold_right (op f) empty l0). - apply fold_right_equivlistA_restr2 with (eqA:=Logic.eq)(R:=complement eq_key); auto with *. + intros p p' <- acc acc' Hacc. destruct p as (k,e); unfold op, uncurry; simpl. destruct (f k e); now rewrite Hacc. + intros (k,e) (k',e') z z'. unfold op, complement, uncurry, eq_key; simpl. intros Hk Hz. destruct (f k e), (f k' e'); rewrite <- Hz; try reflexivity. now apply add_add_2. + apply NoDupA_incl with eq_key; trivial. intros; subst; now red. + apply PermutationA_preserves_NoDupA with l; auto with *. apply Permutation_PermutationA; auto with *. apply NoDupA_incl with eq_key; trivial. intros; subst; now red. + apply NoDupA_altdef. apply NoDupA_rev. apply eqk_equiv. apply bindings_spec2w. + apply PermutationA_equivlistA; auto with *. apply Permutation_PermutationA; auto with *. - clearbody l'. clear l Hl Hl' H P m m' Hm. induction E. + reflexivity. + simpl. destruct x as (k,e), x' as (k',e'). unfold op, uncurry at 1 3; simpl. destruct H; simpl in *. rewrite <- (Hf _ _ H _ _ H0). destruct (f k e); trivial. now f_equiv. Qed. Instance for_all_m {elt} : Proper ((E.eq==>Logic.eq==>Logic.eq)==>Equal==>Logic.eq) (@for_all elt). Proof. intros f f' Hf m m' Hm. rewrite 2 for_all_filter. (* Strange: we cannot rewrite Hm here... *) f_equiv. f_equiv; trivial. intros k k' Hk e e' He. f_equal. now apply Hf. Qed. Instance exists_m {elt} : Proper ((E.eq==>Logic.eq==>Logic.eq)==>Equal==>Logic.eq) (@exists_ elt). Proof. intros f f' Hf m m' Hm. rewrite 2 exists_filter. f_equal. now apply is_empty_m, filter_m. Qed. Fact diamond_add {elt} : Diamond Equal (@add elt). Proof. intros k k' e e' a b b' Hk <- <-. now apply add_add_2. Qed. Instance update_m {elt} : Proper (Equal ==> Equal ==> Equal) (@update elt). Proof. intros m1 m1' Hm1 m2 m2' Hm2. unfold update. apply fold_Proper; auto using diamond_add with *. Qed. Instance restrict_m {elt} : Proper (Equal==>Equal==>Equal) (@restrict elt). Proof. intros m1 m1' Hm1 m2 m2' Hm2 y. unfold restrict. apply eq_option_alt. intros e. rewrite !find_spec, !filter_iff, Hm1, Hm2. reflexivity. clear. intros x x' Hx e e' He. now rewrite Hx. clear. intros x x' Hx e e' He. now rewrite Hx. Qed. Instance diff_m {elt} : Proper (Equal==>Equal==>Equal) (@diff elt). Proof. intros m1 m1' Hm1 m2 m2' Hm2 y. unfold diff. apply eq_option_alt. intros e. rewrite !find_spec, !filter_iff, Hm1, Hm2. reflexivity. clear. intros x x' Hx e e' He. now rewrite Hx. clear. intros x x' Hx e e' He. now rewrite Hx. Qed. End WProperties_fun. (** * Same Properties for self-contained weak maps and for full maps *) Module WProperties (M:WS) := WProperties_fun M.E M. Module Properties := WProperties. (** * Properties specific to maps with ordered keys *) Module OrdProperties (M:S). Module Import ME := OrderedTypeFacts M.E. Module Import O:=KeyOrderedType M.E. Module Import P:=Properties M. Import M. Section Elt. Variable elt:Type. Definition Above x (m:t elt) := forall y, In y m -> E.lt y x. Definition Below x (m:t elt) := forall y, In y m -> E.lt x y. Section Bindings. Lemma sort_equivlistA_eqlistA : forall l l' : list (key*elt), sort ltk l -> sort ltk l' -> equivlistA eqke l l' -> eqlistA eqke l l'. Proof. apply SortA_equivlistA_eqlistA; eauto with *. Qed. Ltac klean := unfold O.eqke, O.ltk, RelCompFun in *; simpl in *. Ltac keauto := klean; intuition; eauto. Definition gtb (p p':key*elt) := match E.compare (fst p) (fst p') with Gt => true | _ => false end. Definition leb p := fun p' => negb (gtb p p'). Definition bindings_lt p m := List.filter (gtb p) (bindings m). Definition bindings_ge p m := List.filter (leb p) (bindings m). Lemma gtb_1 : forall p p', gtb p p' = true <-> ltk p' p. Proof. intros (x,e) (y,e'); unfold gtb; klean. case E.compare_spec; intuition; try discriminate; ME.order. Qed. Lemma leb_1 : forall p p', leb p p' = true <-> ~ltk p' p. Proof. intros (x,e) (y,e'); unfold leb, gtb; klean. case E.compare_spec; intuition; try discriminate; ME.order. Qed. Instance gtb_compat : forall p, Proper (eqke==>eq) (gtb p). Proof. red; intros (x,e) (a,e') (b,e'') H; red in H; simpl in *; destruct H. generalize (gtb_1 (x,e) (a,e'))(gtb_1 (x,e) (b,e'')); destruct (gtb (x,e) (a,e')); destruct (gtb (x,e) (b,e'')); klean; auto. - intros. symmetry; rewrite H2. rewrite <-H, <-H1; auto. - intros. rewrite H1. rewrite H, <- H2; auto. Qed. Instance leb_compat : forall p, Proper (eqke==>eq) (leb p). Proof. intros x a b H. unfold leb; f_equal; apply gtb_compat; auto. Qed. Hint Resolve gtb_compat leb_compat bindings_spec2 : map. Lemma bindings_split : forall p m, bindings m = bindings_lt p m ++ bindings_ge p m. Proof. unfold bindings_lt, bindings_ge, leb; intros. apply filter_split with (eqA:=eqk) (ltA:=ltk); eauto with *. intros; destruct x; destruct y; destruct p. rewrite gtb_1 in H; klean. apply not_true_iff_false in H0. rewrite gtb_1 in H0. klean. ME.order. Qed. Lemma bindings_Add : forall m m' x e, ~In x m -> Add x e m m' -> eqlistA eqke (bindings m') (bindings_lt (x,e) m ++ (x,e):: bindings_ge (x,e) m). Proof. intros; unfold bindings_lt, bindings_ge. apply sort_equivlistA_eqlistA; auto with *. - apply (@SortA_app _ eqke); auto with *. + apply (@filter_sort _ eqke); auto with *; keauto. + constructor; auto with map. * apply (@filter_sort _ eqke); auto with *; keauto. * rewrite (@InfA_alt _ eqke); auto with *; try (keauto; fail). { intros. rewrite filter_InA in H1; auto with *; destruct H1. rewrite leb_1 in H2. destruct y; klean. rewrite <- bindings_mapsto_iff in H1. assert (~E.eq x t0). { contradict H. exists e0; apply MapsTo_1 with t0; auto. ME.order. } ME.order. } { apply (@filter_sort _ eqke); auto with *; keauto. } + intros. rewrite filter_InA in H1; auto with *; destruct H1. rewrite gtb_1 in H3. destruct y; destruct x0; klean. inversion_clear H2. * red in H4; klean; destruct H4; simpl in *. ME.order. * rewrite filter_InA in H4; auto with *; destruct H4. rewrite leb_1 in H4. klean; ME.order. - intros (k,e'). rewrite InA_app_iff, InA_cons, 2 filter_InA, <-2 bindings_mapsto_iff, leb_1, gtb_1, find_mapsto_iff, (H0 k), <- find_mapsto_iff, add_mapsto_iff by (auto with * ). change (eqke (k,e') (x,e)) with (E.eq k x /\ e' = e). klean. split. + intros [(->,->)|(Hk,Hm)]. * right; now left. * destruct (lt_dec k x); intuition. + intros [(Hm,LT)|[(->,->)|(Hm,EQ)]]. * right; split; trivial; ME.order. * now left. * destruct (eq_dec x k) as [Hk|Hk]. elim H. exists e'. now rewrite Hk. right; auto. Qed. Lemma bindings_Add_Above : forall m m' x e, Above x m -> Add x e m m' -> eqlistA eqke (bindings m') (bindings m ++ (x,e)::nil). Proof. intros. apply sort_equivlistA_eqlistA; auto with *. apply (@SortA_app _ eqke); auto with *. intros. inversion_clear H2. destruct x0; destruct y. rewrite <- bindings_mapsto_iff in H1. destruct H3; klean. rewrite H2. apply H; firstorder. inversion H3. red; intros a; destruct a. rewrite InA_app_iff, InA_cons, InA_nil, <- 2 bindings_mapsto_iff, find_mapsto_iff, (H0 t0), <- find_mapsto_iff, add_mapsto_iff by (auto with *). change (eqke (t0,e0) (x,e)) with (E.eq t0 x /\ e0 = e). intuition. destruct (E.eq_dec x t0) as [Heq|Hneq]; auto. exfalso. assert (In t0 m) by (exists e0; auto). generalize (H t0 H1). ME.order. Qed. Lemma bindings_Add_Below : forall m m' x e, Below x m -> Add x e m m' -> eqlistA eqke (bindings m') ((x,e)::bindings m). Proof. intros. apply sort_equivlistA_eqlistA; auto with *. change (sort ltk (((x,e)::nil) ++ bindings m)). apply (@SortA_app _ eqke); auto with *. intros. inversion_clear H1. destruct y; destruct x0. rewrite <- bindings_mapsto_iff in H2. destruct H3; klean. rewrite H1. apply H; firstorder. inversion H3. red; intros a; destruct a. rewrite InA_cons, <- 2 bindings_mapsto_iff, find_mapsto_iff, (H0 t0), <- find_mapsto_iff, add_mapsto_iff by (auto with * ). change (eqke (t0,e0) (x,e)) with (E.eq t0 x /\ e0 = e). intuition. destruct (E.eq_dec x t0) as [Heq|Hneq]; auto. exfalso. assert (In t0 m) by (exists e0; auto). generalize (H t0 H1). ME.order. Qed. Lemma bindings_Equal_eqlistA : forall (m m': t elt), Equal m m' -> eqlistA eqke (bindings m) (bindings m'). Proof. intros. apply sort_equivlistA_eqlistA; auto with *. red; intros. destruct x; do 2 rewrite <- bindings_mapsto_iff. do 2 rewrite find_mapsto_iff; rewrite H; split; auto. Qed. End Bindings. Section Min_Max_Elt. (** We emulate two [max_elt] and [min_elt] functions. *) Fixpoint max_elt_aux (l:list (key*elt)) := match l with | nil => None | (x,e)::nil => Some (x,e) | (x,e)::l => max_elt_aux l end. Definition max_elt m := max_elt_aux (bindings m). Lemma max_elt_Above : forall m x e, max_elt m = Some (x,e) -> Above x (remove x m). Proof. red; intros. rewrite remove_in_iff in H0. destruct H0. rewrite bindings_in_iff in H1. destruct H1. unfold max_elt in *. generalize (bindings_spec2 m). revert x e H y x0 H0 H1. induction (bindings m). simpl; intros; try discriminate. intros. destruct a; destruct l; simpl in *. injection H; clear H; intros; subst. inversion_clear H1. red in H; simpl in *; intuition. now elim H0. inversion H. change (max_elt_aux (p::l) = Some (x,e)) in H. generalize (IHl x e H); clear IHl; intros IHl. inversion_clear H1; [ | inversion_clear H2; eauto ]. red in H3; simpl in H3; destruct H3. destruct p as (p1,p2). destruct (E.eq_dec p1 x) as [Heq|Hneq]. rewrite <- Heq; auto. inversion_clear H2. inversion_clear H5. red in H2; simpl in H2; ME.order. transitivity p1; auto. inversion_clear H2. inversion_clear H5. red in H2; simpl in H2; ME.order. eapply IHl; eauto with *. econstructor; eauto. red; eauto with *. inversion H2; auto. Qed. Lemma max_elt_MapsTo : forall m x e, max_elt m = Some (x,e) -> MapsTo x e m. Proof. intros. unfold max_elt in *. rewrite bindings_mapsto_iff. induction (bindings m). simpl; try discriminate. destruct a; destruct l; simpl in *. injection H; intros; subst; constructor; red; auto with *. constructor 2; auto. Qed. Lemma max_elt_Empty : forall m, max_elt m = None -> Empty m. Proof. intros. unfold max_elt in *. rewrite bindings_Empty. induction (bindings m); auto. destruct a; destruct l; simpl in *; try discriminate. assert (H':=IHl H); discriminate. Qed. Definition min_elt m : option (key*elt) := match bindings m with | nil => None | (x,e)::_ => Some (x,e) end. Lemma min_elt_Below : forall m x e, min_elt m = Some (x,e) -> Below x (remove x m). Proof. unfold min_elt, Below; intros. rewrite remove_in_iff in H0; destruct H0. rewrite bindings_in_iff in H1. destruct H1. generalize (bindings_spec2 m). destruct (bindings m). try discriminate. destruct p; injection H; intros; subst. inversion_clear H1. red in H2; destruct H2; simpl in *; ME.order. inversion_clear H4. rewrite (@InfA_alt _ eqke) in H3; eauto with *. apply (H3 (y,x0)); auto. Qed. Lemma min_elt_MapsTo : forall m x e, min_elt m = Some (x,e) -> MapsTo x e m. Proof. intros. unfold min_elt in *. rewrite bindings_mapsto_iff. destruct (bindings m). simpl; try discriminate. destruct p; simpl in *. injection H; intros; subst; constructor; red; auto with *. Qed. Lemma min_elt_Empty : forall m, min_elt m = None -> Empty m. Proof. intros. unfold min_elt in *. rewrite bindings_Empty. destruct (bindings m); auto. destruct p; simpl in *; discriminate. Qed. End Min_Max_Elt. Section Induction_Principles. Lemma map_induction_max : forall P : t elt -> Type, (forall m, Empty m -> P m) -> (forall m m', P m -> forall x e, Above x m -> Add x e m m' -> P m') -> forall m, P m. Proof. intros; remember (cardinal m) as n; revert m Heqn; induction n; intros. apply X; apply cardinal_inv_1; auto. case_eq (max_elt m); intros. destruct p. assert (Add k e (remove k m) m). { apply max_elt_MapsTo, find_spec, add_id in H. unfold Add. symmetry. now rewrite add_remove_1. } apply X0 with (remove k m) k e; auto with map. apply IHn. assert (S n = S (cardinal (remove k m))). { rewrite Heqn. eapply cardinal_S; eauto with map. } inversion H1; auto. eapply max_elt_Above; eauto. apply X; apply max_elt_Empty; auto. Qed. Lemma map_induction_min : forall P : t elt -> Type, (forall m, Empty m -> P m) -> (forall m m', P m -> forall x e, Below x m -> Add x e m m' -> P m') -> forall m, P m. Proof. intros; remember (cardinal m) as n; revert m Heqn; induction n; intros. apply X; apply cardinal_inv_1; auto. case_eq (min_elt m); intros. destruct p. assert (Add k e (remove k m) m). { apply min_elt_MapsTo, find_spec, add_id in H. unfold Add. symmetry. now rewrite add_remove_1. } apply X0 with (remove k m) k e; auto. apply IHn. assert (S n = S (cardinal (remove k m))). { rewrite Heqn. eapply cardinal_S; eauto with map. } inversion H1; auto. eapply min_elt_Below; eauto. apply X; apply min_elt_Empty; auto. Qed. End Induction_Principles. Section Fold_properties. (** The following lemma has already been proved on Weak Maps, but with one additionnal hypothesis (some [transpose] fact). *) Lemma fold_Equal : forall m1 m2 (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA) (f:key->elt->A->A)(i:A), Proper (E.eq==>eq==>eqA==>eqA) f -> Equal m1 m2 -> eqA (fold f m1 i) (fold f m2 i). Proof. intros m1 m2 A eqA st f i Hf Heq. rewrite 2 fold_spec_right. apply fold_right_eqlistA with (eqA:=eqke) (eqB:=eqA); auto. intros (k,e) (k',e') (Hk,He) a a' Ha; simpl in *; apply Hf; auto. apply eqlistA_rev. apply bindings_Equal_eqlistA. auto. Qed. Lemma fold_Add_Above : forall m1 m2 x e (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA) (f:key->elt->A->A)(i:A) (P:Proper (E.eq==>eq==>eqA==>eqA) f), Above x m1 -> Add x e m1 m2 -> eqA (fold f m2 i) (f x e (fold f m1 i)). Proof. intros. rewrite 2 fold_spec_right. set (f':=uncurry f). transitivity (fold_right f' i (rev (bindings m1 ++ (x,e)::nil))). apply fold_right_eqlistA with (eqA:=eqke) (eqB:=eqA); auto. intros (k1,e1) (k2,e2) (Hk,He) a1 a2 Ha; unfold f'; simpl in *. apply P; auto. apply eqlistA_rev. apply bindings_Add_Above; auto. rewrite distr_rev; simpl. reflexivity. Qed. Lemma fold_Add_Below : forall m1 m2 x e (A:Type)(eqA:A->A->Prop)(st:Equivalence eqA) (f:key->elt->A->A)(i:A) (P:Proper (E.eq==>eq==>eqA==>eqA) f), Below x m1 -> Add x e m1 m2 -> eqA (fold f m2 i) (fold f m1 (f x e i)). Proof. intros. rewrite 2 fold_spec_right. set (f':=uncurry f). transitivity (fold_right f' i (rev (((x,e)::nil)++bindings m1))). apply fold_right_eqlistA with (eqA:=eqke) (eqB:=eqA); auto. intros (k1,e1) (k2,e2) (Hk,He) a1 a2 Ha; unfold f'; simpl in *; apply P; auto. apply eqlistA_rev. simpl; apply bindings_Add_Below; auto. rewrite distr_rev; simpl. rewrite fold_right_app. reflexivity. Qed. End Fold_properties. End Elt. End OrdProperties.