(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* Type. (** Dependent equality *) Inductive eq_dep (p:U) (x:P p) : forall q:U, P q -> Prop := eq_dep_intro : eq_dep p x p x. Hint Constructors eq_dep: core v62. Lemma eq_dep_sym : forall (p q:U) (x:P p) (y:P q), eq_dep p x q y -> eq_dep q y p x. Proof. destruct 1; auto. Qed. Hint Immediate eq_dep_sym: core v62. Lemma eq_dep_trans : forall (p q r:U) (x:P p) (y:P q) (z:P r), eq_dep p x q y -> eq_dep q y r z -> eq_dep p x r z. Proof. destruct 1; auto. Qed. Scheme eq_indd := Induction for eq Sort Prop. Inductive eq_dep1 (p:U) (x:P p) (q:U) (y:P q) : Prop := eq_dep1_intro : forall h:q = p, x = eq_rect q P y p h -> eq_dep1 p x q y. Lemma eq_dep1_dep : forall (p:U) (x:P p) (q:U) (y:P q), eq_dep1 p x q y -> eq_dep p x q y. Proof. destruct 1 as (eq_qp, H). destruct eq_qp using eq_indd. rewrite H. apply eq_dep_intro. Qed. Lemma eq_dep_dep1 : forall (p q:U) (x:P p) (y:P q), eq_dep p x q y -> eq_dep1 p x q y. Proof. destruct 1. apply eq_dep1_intro with (refl_equal p). simpl in |- *; trivial. Qed. (** Invariance by Substitution of Reflexive Equality Proofs *) Axiom eq_rect_eq : forall (p:U) (Q:U -> Type) (x:Q p) (h:p = p), x = eq_rect p Q x p h. (** Injectivity of Dependent Equality is a consequence of *) (** Invariance by Substitution of Reflexive Equality Proof *) Lemma eq_dep1_eq : forall (p:U) (x y:P p), eq_dep1 p x p y -> x = y. Proof. simple destruct 1; intro. rewrite <- eq_rect_eq; auto. Qed. Lemma eq_dep_eq : forall (p:U) (x y:P p), eq_dep p x p y -> x = y. Proof. intros; apply eq_dep1_eq; apply eq_dep_dep1; trivial. Qed. End Dependent_Equality. (** Uniqueness of Identity Proofs (UIP) is a consequence of *) (** Injectivity of Dependent Equality *) Lemma UIP : forall (U:Type) (x y:U) (p1 p2:x = y), p1 = p2. Proof. intros; apply eq_dep_eq with (P := fun y => x = y). elim p2 using eq_indd. elim p1 using eq_indd. apply eq_dep_intro. Qed. (** Uniqueness of Reflexive Identity Proofs is a direct instance of UIP *) Lemma UIP_refl : forall (U:Type) (x:U) (p:x = x), p = refl_equal x. Proof. intros; apply UIP. Qed. (** Streicher axiom K is a direct consequence of Uniqueness of Reflexive Identity Proofs *) Lemma Streicher_K : forall (U:Type) (x:U) (P:x = x -> Prop), P (refl_equal x) -> forall p:x = x, P p. Proof. intros; rewrite UIP_refl; assumption. Qed. (** We finally recover eq_rec_eq (alternatively eq_rect_eq) from K *) Lemma eq_rec_eq : forall (U:Type) (P:U -> Set) (p:U) (x:P p) (h:p = p), x = eq_rec p P x p h. Proof. intros. apply Streicher_K with (p := h). reflexivity. Qed. (** Dependent equality is equivalent to equality on dependent pairs *) Lemma equiv_eqex_eqdep : forall (U:Set) (P:U -> Set) (p q:U) (x:P p) (y:P q), existS P p x = existS P q y <-> eq_dep U P p x q y. Proof. split. (* -> *) intro H. change p with (projS1 (existS P p x)) in |- *. change x at 2 with (projS2 (existS P p x)) in |- *. rewrite H. apply eq_dep_intro. (* <- *) destruct 1; reflexivity. Qed. (** UIP implies the injectivity of equality on dependent pairs *) Lemma inj_pair2 : forall (U:Set) (P:U -> Set) (p:U) (x y:P p), existS P p x = existS P p y -> x = y. Proof. intros. apply (eq_dep_eq U P). generalize (equiv_eqex_eqdep U P p p x y). simple induction 1. intros. auto. Qed. (** UIP implies the injectivity of equality on dependent pairs *) Lemma inj_pairT2 : forall (U:Type) (P:U -> Type) (p:U) (x y:P p), existT P p x = existT P p y -> x = y. Proof. intros. apply (eq_dep_eq U P). change p at 1 with (projT1 (existT P p x)) in |- *. change x at 2 with (projT2 (existT P p x)) in |- *. rewrite H. apply eq_dep_intro. Qed. (** The main results to be exported *) Hint Resolve eq_dep_intro eq_dep_eq: core v62. Hint Immediate eq_dep_sym: core v62. Hint Resolve inj_pair2 inj_pairT2: core.