(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* Prop), (exists! x : A, P x) -> { x : A | P x }. (** The idea for the following proof comes from [ChicliPottierSimpson02] *) Theorem excluded_middle_informative : forall P:Prop, {P} + {~ P}. Proof. apply (constructive_definite_descr_excluded_middle constructive_definite_description classic). Qed. Theorem classical_definite_description : forall (A : Type) (P : A->Prop), inhabited A -> { x : A | (exists! x : A, P x) -> P x }. Proof. intros A P i. destruct (excluded_middle_informative (exists! x, P x)) as [Hex|HnonP]. apply constructive_definite_description with (P:= fun x => (exists! x : A, P x) -> P x). destruct Hex as (x,(Hx,Huni)). exists x; split. intros _; exact Hx. firstorder. exists i; tauto. Qed. (** Church's iota operator *) Definition iota (A : Type) (i:inhabited A) (P : A->Prop) : A := proj1_sig (classical_definite_description P i). Definition iota_spec (A : Type) (i:inhabited A) (P : A->Prop) : (exists! x:A, P x) -> P (iota i P) := proj2_sig (classical_definite_description P i). (** Weaker lemmas (compatibility lemmas) *) Unset Implicit Arguments. Lemma dependent_description : forall (A:Type) (B:A -> Type) (R:forall x:A, B x -> Prop), (forall x:A, exists! y : B x, R x y) -> (exists f : (forall x:A, B x), forall x:A, R x (f x)). Proof. intros A B R H. assert (Hexuni:forall x, exists! y, R x y). intro x. apply H. exists (fun x => proj1_sig (constructive_definite_description (R x) (Hexuni x))). intro x. apply (proj2_sig (constructive_definite_description (R x) (Hexuni x))). Qed. Theorem description : forall (A B:Type) (R:A -> B -> Prop), (forall x : A, exists! y : B, R x y) -> (exists f : A->B, forall x:A, R x (f x)). Proof. intros A B. apply (dependent_description A (fun _ => B)). Qed. (** Axiom of unique "choice" (functional reification of functional relations) *) Set Implicit Arguments. Require Import Setoid. Theorem unique_choice : forall (A B:Type) (R:A -> B -> Prop), (forall x:A, exists! y : B, R x y) -> (exists f : A -> B, forall x:A, R x (f x)). Proof. intros A B R H. apply (description A B). intro x. apply H. Qed.