(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* false in Set. [1] Laurent Chicli, Loïc Pottier, Carlos Simpson, Mathematical Quotients and Quotient Types in Coq, Proceedings of TYPES 2002, Lecture Notes in Computer Science 2646, Springer Verlag. *) Require Export Classical. Axiom dependent_description : forall (A:Type) (B:A -> Type) (R:forall x:A, B x -> Prop), (forall x:A, exists y : B x, R x y /\ (forall y':B x, R x y' -> y = y')) -> exists f : forall x:A, B x, (forall x:A, R x (f x)). (** Principle of definite descriptions (aka axiom of unique choice) *) Theorem description : forall (A B:Type) (R:A -> B -> Prop), (forall x:A, exists y : B, R x y /\ (forall y':B, R x y' -> y = y')) -> exists f : A -> B, (forall x:A, R x (f x)). Proof. intros A B. apply (dependent_description A (fun _ => B)). Qed. (** The followig proof comes from [1] *) Theorem classic_set : ((forall P:Prop, {P} + {~ P}) -> False) -> False. Proof. intro HnotEM. set (R := fun A b => A /\ true = b \/ ~ A /\ false = b). assert (H : exists f : Prop -> bool, (forall A:Prop, R A (f A))). apply description. intro A. destruct (classic A) as [Ha| Hnota]. exists true; split. left; split; [ assumption | reflexivity ]. intros y [[_ Hy]| [Hna _]]. assumption. contradiction. exists false; split. right; split; [ assumption | reflexivity ]. intros y [[Ha _]| [_ Hy]]. contradiction. assumption. destruct H as [f Hf]. apply HnotEM. intro P. assert (HfP := Hf P). (* Elimination from Hf to Set is not allowed but from f to Set yes ! *) destruct (f P). left. destruct HfP as [[Ha _]| [_ Hfalse]]. assumption. discriminate. right. destruct HfP as [[_ Hfalse]| [Hna _]]. discriminate. assumption. Qed.