(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* in_dom B a m' = true. Definition MapSubset_1 (m:Map A) (m':Map B) := match MapSweep A (fun (a:ad) (_:A) => negb (in_dom B a m')) m with | None => true | _ => false end. Definition MapSubset_2 (m:Map A) (m':Map B) := eqmap A (MapDomRestrBy A B m m') (M0 A). Lemma MapSubset_imp_1 : forall (m:Map A) (m':Map B), MapSubset m m' -> MapSubset_1 m m' = true. Proof. unfold MapSubset, MapSubset_1 in |- *. intros. elim (option_sum _ (MapSweep A (fun (a:ad) (_:A) => negb (in_dom B a m')) m)). intro H0. elim H0. intro r. elim r. intros a y H1. cut (negb (in_dom B a m') = true). intro. cut (in_dom A a m = false). intro. unfold in_dom in H3. rewrite (MapSweep_semantics_2 _ _ m a y H1) in H3. discriminate H3. elim (sumbool_of_bool (in_dom A a m)). intro H3. rewrite (H a H3) in H2. discriminate H2. trivial. exact (MapSweep_semantics_1 _ _ m a y H1). intro H0. rewrite H0. reflexivity. Qed. Lemma MapSubset_1_imp : forall (m:Map A) (m':Map B), MapSubset_1 m m' = true -> MapSubset m m'. Proof. unfold MapSubset, MapSubset_1 in |- *. unfold in_dom at 2 in |- *. intros. elim (option_sum _ (MapGet A m a)). intro H1. elim H1. intros y H2. elim (option_sum _ (MapSweep A (fun (a:ad) (_:A) => negb (in_dom B a m')) m)). intro H3. elim H3. intro r. elim r. intros a' y' H4. rewrite H4 in H. discriminate H. intro H3. cut (negb (in_dom B a m') = false). intro. rewrite (negb_intro (in_dom B a m')). rewrite H4. reflexivity. exact (MapSweep_semantics_3 _ _ m H3 a y H2). intro H1. rewrite H1 in H0. discriminate H0. Qed. Lemma map_dom_empty_1 : forall m:Map A, eqmap A m (M0 A) -> forall a:ad, in_dom _ a m = false. Proof. unfold eqmap, eqm, in_dom in |- *. intros. rewrite (H a). reflexivity. Qed. Lemma map_dom_empty_2 : forall m:Map A, (forall a:ad, in_dom _ a m = false) -> eqmap A m (M0 A). Proof. unfold eqmap, eqm, in_dom in |- *. intros. cut (match MapGet A m a with | None => false | Some _ => true end = false). case (MapGet A m a); trivial. intros. discriminate H0. exact (H a). Qed. Lemma MapSubset_imp_2 : forall (m:Map A) (m':Map B), MapSubset m m' -> MapSubset_2 m m'. Proof. unfold MapSubset, MapSubset_2 in |- *. intros. apply map_dom_empty_2. intro. rewrite in_dom_restrby. elim (sumbool_of_bool (in_dom A a m)). intro H0. rewrite H0. rewrite (H a H0). reflexivity. intro H0. rewrite H0. reflexivity. Qed. Lemma MapSubset_2_imp : forall (m:Map A) (m':Map B), MapSubset_2 m m' -> MapSubset m m'. Proof. unfold MapSubset, MapSubset_2 in |- *. intros. cut (in_dom _ a (MapDomRestrBy A B m m') = false). rewrite in_dom_restrby. intro. elim (andb_false_elim _ _ H1). rewrite H0. intro H2. discriminate H2. intro H2. rewrite (negb_intro (in_dom B a m')). rewrite H2. reflexivity. exact (map_dom_empty_1 _ H a). Qed. End MapSubsetDef. Section MapSubsetOrder. Variables A B C : Set. Lemma MapSubset_refl : forall m:Map A, MapSubset A A m m. Proof. unfold MapSubset in |- *. trivial. Qed. Lemma MapSubset_antisym : forall (m:Map A) (m':Map B), MapSubset A B m m' -> MapSubset B A m' m -> eqmap unit (MapDom A m) (MapDom B m'). Proof. unfold MapSubset, eqmap, eqm in |- *. intros. elim (option_sum _ (MapGet _ (MapDom A m) a)). intro H1. elim H1. intro t. elim t. intro H2. elim (option_sum _ (MapGet _ (MapDom B m') a)). intro H3. elim H3. intro t'. elim t'. intro H4. rewrite H4. exact H2. intro H3. cut (in_dom B a m' = true). intro. rewrite (MapDom_Dom B m' a) in H4. unfold in_FSet, in_dom in H4. rewrite H3 in H4. discriminate H4. apply H. rewrite (MapDom_Dom A m a). unfold in_FSet, in_dom in |- *. rewrite H2. reflexivity. intro H1. elim (option_sum _ (MapGet _ (MapDom B m') a)). intro H2. elim H2. intros t H3. cut (in_dom A a m = true). intro. rewrite (MapDom_Dom A m a) in H4. unfold in_FSet, in_dom in H4. rewrite H1 in H4. discriminate H4. apply H0. rewrite (MapDom_Dom B m' a). unfold in_FSet, in_dom in |- *. rewrite H3. reflexivity. intro H2. rewrite H2. exact H1. Qed. Lemma MapSubset_trans : forall (m:Map A) (m':Map B) (m'':Map C), MapSubset A B m m' -> MapSubset B C m' m'' -> MapSubset A C m m''. Proof. unfold MapSubset in |- *. intros. apply H0. apply H. assumption. Qed. End MapSubsetOrder. Section FSubsetOrder. Lemma FSubset_refl : forall s:FSet, MapSubset _ _ s s. Proof. exact (MapSubset_refl unit). Qed. Lemma FSubset_antisym : forall s s':FSet, MapSubset _ _ s s' -> MapSubset _ _ s' s -> eqmap unit s s'. Proof. intros. rewrite <- (FSet_Dom s). rewrite <- (FSet_Dom s'). exact (MapSubset_antisym _ _ s s' H H0). Qed. Lemma FSubset_trans : forall s s' s'':FSet, MapSubset _ _ s s' -> MapSubset _ _ s' s'' -> MapSubset _ _ s s''. Proof. exact (MapSubset_trans unit unit unit). Qed. End FSubsetOrder. Section MapSubsetExtra. Variables A B : Set. Lemma MapSubset_Dom_1 : forall (m:Map A) (m':Map B), MapSubset A B m m' -> MapSubset unit unit (MapDom A m) (MapDom B m'). Proof. unfold MapSubset in |- *. intros. elim (MapDom_semantics_2 _ m a H0). intros y H1. cut (in_dom A a m = true -> in_dom B a m' = true). intro. unfold in_dom in H2. rewrite H1 in H2. elim (option_sum _ (MapGet B m' a)). intro H3. elim H3. intros y' H4. exact (MapDom_semantics_1 _ m' a y' H4). intro H3. rewrite H3 in H2. cut (false = true). intro. discriminate H4. apply H2. reflexivity. exact (H a). Qed. Lemma MapSubset_Dom_2 : forall (m:Map A) (m':Map B), MapSubset unit unit (MapDom A m) (MapDom B m') -> MapSubset A B m m'. Proof. unfold MapSubset in |- *. intros. unfold in_dom in H0. elim (option_sum _ (MapGet A m a)). intro H1. elim H1. intros y H2. elim (MapDom_semantics_2 _ _ _ (H a (MapDom_semantics_1 _ _ _ _ H2))). intros y' H3. unfold in_dom in |- *. rewrite H3. reflexivity. intro H1. rewrite H1 in H0. discriminate H0. Qed. Lemma MapSubset_1_Dom : forall (m:Map A) (m':Map B), MapSubset_1 A B m m' = MapSubset_1 unit unit (MapDom A m) (MapDom B m'). Proof. intros. elim (sumbool_of_bool (MapSubset_1 A B m m')). intro H. rewrite H. apply sym_eq. apply MapSubset_imp_1. apply MapSubset_Dom_1. exact (MapSubset_1_imp _ _ _ _ H). intro H. rewrite H. elim (sumbool_of_bool (MapSubset_1 unit unit (MapDom A m) (MapDom B m'))). intro H0. rewrite (MapSubset_imp_1 _ _ _ _ (MapSubset_Dom_2 _ _ (MapSubset_1_imp _ _ _ _ H0))) in H. discriminate H. intro. apply sym_eq. assumption. Qed. Lemma MapSubset_Put : forall (m:Map A) (a:ad) (y:A), MapSubset A A m (MapPut A m a y). Proof. unfold MapSubset in |- *. intros. rewrite in_dom_put. rewrite H. apply orb_b_true. Qed. Lemma MapSubset_Put_mono : forall (m:Map A) (m':Map B) (a:ad) (y:A) (y':B), MapSubset A B m m' -> MapSubset A B (MapPut A m a y) (MapPut B m' a y'). Proof. unfold MapSubset in |- *. intros. rewrite in_dom_put. rewrite (in_dom_put A m a y a0) in H0. elim (orb_true_elim _ _ H0). intro H1. rewrite H1. reflexivity. intro H1. rewrite (H _ H1). apply orb_b_true. Qed. Lemma MapSubset_Put_behind : forall (m:Map A) (a:ad) (y:A), MapSubset A A m (MapPut_behind A m a y). Proof. unfold MapSubset in |- *. intros. rewrite in_dom_put_behind. rewrite H. apply orb_b_true. Qed. Lemma MapSubset_Put_behind_mono : forall (m:Map A) (m':Map B) (a:ad) (y:A) (y':B), MapSubset A B m m' -> MapSubset A B (MapPut_behind A m a y) (MapPut_behind B m' a y'). Proof. unfold MapSubset in |- *. intros. rewrite in_dom_put_behind. rewrite (in_dom_put_behind A m a y a0) in H0. elim (orb_true_elim _ _ H0). intro H1. rewrite H1. reflexivity. intro H1. rewrite (H _ H1). apply orb_b_true. Qed. Lemma MapSubset_Remove : forall (m:Map A) (a:ad), MapSubset A A (MapRemove A m a) m. Proof. unfold MapSubset in |- *. intros. unfold MapSubset in |- *. intros. rewrite (in_dom_remove _ m a a0) in H. elim (andb_prop _ _ H). trivial. Qed. Lemma MapSubset_Remove_mono : forall (m:Map A) (m':Map B) (a:ad), MapSubset A B m m' -> MapSubset A B (MapRemove A m a) (MapRemove B m' a). Proof. unfold MapSubset in |- *. intros. rewrite in_dom_remove. rewrite (in_dom_remove A m a a0) in H0. elim (andb_prop _ _ H0). intros. rewrite H1. rewrite (H _ H2). reflexivity. Qed. Lemma MapSubset_Merge_l : forall m m':Map A, MapSubset A A m (MapMerge A m m'). Proof. unfold MapSubset in |- *. intros. rewrite in_dom_merge. rewrite H. reflexivity. Qed. Lemma MapSubset_Merge_r : forall m m':Map A, MapSubset A A m' (MapMerge A m m'). Proof. unfold MapSubset in |- *. intros. rewrite in_dom_merge. rewrite H. apply orb_b_true. Qed. Lemma MapSubset_Merge_mono : forall (m m':Map A) (m'' m''':Map B), MapSubset A B m m'' -> MapSubset A B m' m''' -> MapSubset A B (MapMerge A m m') (MapMerge B m'' m'''). Proof. unfold MapSubset in |- *. intros. rewrite in_dom_merge. rewrite (in_dom_merge A m m' a) in H1. elim (orb_true_elim _ _ H1). intro H2. rewrite (H _ H2). reflexivity. intro H2. rewrite (H0 _ H2). apply orb_b_true. Qed. Lemma MapSubset_DomRestrTo_l : forall (m:Map A) (m':Map B), MapSubset A A (MapDomRestrTo A B m m') m. Proof. unfold MapSubset in |- *. intros. rewrite (in_dom_restrto _ _ m m' a) in H. elim (andb_prop _ _ H). trivial. Qed. Lemma MapSubset_DomRestrTo_r : forall (m:Map A) (m':Map B), MapSubset A B (MapDomRestrTo A B m m') m'. Proof. unfold MapSubset in |- *. intros. rewrite (in_dom_restrto _ _ m m' a) in H. elim (andb_prop _ _ H). trivial. Qed. Lemma MapSubset_ext : forall (m0 m1:Map A) (m2 m3:Map B), eqmap A m0 m1 -> eqmap B m2 m3 -> MapSubset A B m0 m2 -> MapSubset A B m1 m3. Proof. intros. apply MapSubset_2_imp. unfold MapSubset_2 in |- *. apply eqmap_trans with (m' := MapDomRestrBy A B m0 m2). apply MapDomRestrBy_ext. apply eqmap_sym. assumption. apply eqmap_sym. assumption. exact (MapSubset_imp_2 _ _ _ _ H1). Qed. Variables C D : Set. Lemma MapSubset_DomRestrTo_mono : forall (m:Map A) (m':Map B) (m'':Map C) (m''':Map D), MapSubset _ _ m m'' -> MapSubset _ _ m' m''' -> MapSubset _ _ (MapDomRestrTo _ _ m m') (MapDomRestrTo _ _ m'' m'''). Proof. unfold MapSubset in |- *. intros. rewrite in_dom_restrto. rewrite (in_dom_restrto A B m m' a) in H1. elim (andb_prop _ _ H1). intros. rewrite (H _ H2). rewrite (H0 _ H3). reflexivity. Qed. Lemma MapSubset_DomRestrBy_l : forall (m:Map A) (m':Map B), MapSubset A A (MapDomRestrBy A B m m') m. Proof. unfold MapSubset in |- *. intros. rewrite (in_dom_restrby _ _ m m' a) in H. elim (andb_prop _ _ H). trivial. Qed. Lemma MapSubset_DomRestrBy_mono : forall (m:Map A) (m':Map B) (m'':Map C) (m''':Map D), MapSubset _ _ m m'' -> MapSubset _ _ m''' m' -> MapSubset _ _ (MapDomRestrBy _ _ m m') (MapDomRestrBy _ _ m'' m'''). Proof. unfold MapSubset in |- *. intros. rewrite in_dom_restrby. rewrite (in_dom_restrby A B m m' a) in H1. elim (andb_prop _ _ H1). intros. rewrite (H _ H2). elim (sumbool_of_bool (in_dom D a m''')). intro H4. rewrite (H0 _ H4) in H3. discriminate H3. intro H4. rewrite H4. reflexivity. Qed. End MapSubsetExtra. Section MapDisjointDef. Variables A B : Set. Definition MapDisjoint (m:Map A) (m':Map B) := forall a:ad, in_dom A a m = true -> in_dom B a m' = true -> False. Definition MapDisjoint_1 (m:Map A) (m':Map B) := match MapSweep A (fun (a:ad) (_:A) => in_dom B a m') m with | None => true | _ => false end. Definition MapDisjoint_2 (m:Map A) (m':Map B) := eqmap A (MapDomRestrTo A B m m') (M0 A). Lemma MapDisjoint_imp_1 : forall (m:Map A) (m':Map B), MapDisjoint m m' -> MapDisjoint_1 m m' = true. Proof. unfold MapDisjoint, MapDisjoint_1 in |- *. intros. elim (option_sum _ (MapSweep A (fun (a:ad) (_:A) => in_dom B a m') m)). intro H0. elim H0. intro r. elim r. intros a y H1. cut (in_dom A a m = true -> in_dom B a m' = true -> False). intro. unfold in_dom at 1 in H2. rewrite (MapSweep_semantics_2 _ _ _ _ _ H1) in H2. rewrite (MapSweep_semantics_1 _ _ _ _ _ H1) in H2. elim (H2 (refl_equal _) (refl_equal _)). exact (H a). intro H0. rewrite H0. reflexivity. Qed. Lemma MapDisjoint_1_imp : forall (m:Map A) (m':Map B), MapDisjoint_1 m m' = true -> MapDisjoint m m'. Proof. unfold MapDisjoint, MapDisjoint_1 in |- *. intros. elim (option_sum _ (MapSweep A (fun (a:ad) (_:A) => in_dom B a m') m)). intro H2. elim H2. intro r. elim r. intros a' y' H3. rewrite H3 in H. discriminate H. intro H2. unfold in_dom in H0. elim (option_sum _ (MapGet A m a)). intro H3. elim H3. intros y H4. rewrite (MapSweep_semantics_3 _ _ _ H2 a y H4) in H1. discriminate H1. intro H3. rewrite H3 in H0. discriminate H0. Qed. Lemma MapDisjoint_imp_2 : forall (m:Map A) (m':Map B), MapDisjoint m m' -> MapDisjoint_2 m m'. Proof. unfold MapDisjoint, MapDisjoint_2 in |- *. unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrTo_semantics A B m m' a). cut (in_dom A a m = true -> in_dom B a m' = true -> False). intro. elim (option_sum _ (MapGet A m a)). intro H1. elim H1. intros y H2. unfold in_dom at 1 in H0. elim (option_sum _ (MapGet B m' a)). intro H3. elim H3. intros y' H4. unfold in_dom at 1 in H0. rewrite H4 in H0. rewrite H2 in H0. elim (H0 (refl_equal _) (refl_equal _)). intro H3. rewrite H3. reflexivity. intro H1. rewrite H1. case (MapGet B m' a); reflexivity. exact (H a). Qed. Lemma MapDisjoint_2_imp : forall (m:Map A) (m':Map B), MapDisjoint_2 m m' -> MapDisjoint m m'. Proof. unfold MapDisjoint, MapDisjoint_2 in |- *. unfold eqmap, eqm in |- *. intros. elim (in_dom_some _ _ _ H0). intros y H2. elim (in_dom_some _ _ _ H1). intros y' H3. cut (MapGet A (MapDomRestrTo A B m m') a = None). intro. rewrite (MapDomRestrTo_semantics _ _ m m' a) in H4. rewrite H3 in H4. rewrite H2 in H4. discriminate H4. exact (H a). Qed. Lemma Map_M0_disjoint : forall m:Map B, MapDisjoint (M0 A) m. Proof. unfold MapDisjoint, in_dom in |- *. intros. discriminate H. Qed. Lemma Map_disjoint_M0 : forall m:Map A, MapDisjoint m (M0 B). Proof. unfold MapDisjoint, in_dom in |- *. intros. discriminate H0. Qed. End MapDisjointDef. Section MapDisjointExtra. Variables A B : Set. Lemma MapDisjoint_ext : forall (m0 m1:Map A) (m2 m3:Map B), eqmap A m0 m1 -> eqmap B m2 m3 -> MapDisjoint A B m0 m2 -> MapDisjoint A B m1 m3. Proof. intros. apply MapDisjoint_2_imp. unfold MapDisjoint_2 in |- *. apply eqmap_trans with (m' := MapDomRestrTo A B m0 m2). apply eqmap_sym. apply MapDomRestrTo_ext. assumption. assumption. exact (MapDisjoint_imp_2 _ _ _ _ H1). Qed. Lemma MapMerge_disjoint : forall m m':Map A, MapDisjoint A A m m' -> forall a:ad, in_dom A a (MapMerge A m m') = orb (andb (in_dom A a m) (negb (in_dom A a m'))) (andb (in_dom A a m') (negb (in_dom A a m))). Proof. unfold MapDisjoint in |- *. intros. rewrite in_dom_merge. elim (sumbool_of_bool (in_dom A a m)). intro H0. rewrite H0. elim (sumbool_of_bool (in_dom A a m')). intro H1. elim (H a H0 H1). intro H1. rewrite H1. reflexivity. intro H0. rewrite H0. simpl in |- *. rewrite andb_b_true. reflexivity. Qed. Lemma MapDisjoint_M2_l : forall (m0 m1:Map A) (m2 m3:Map B), MapDisjoint A B (M2 A m0 m1) (M2 B m2 m3) -> MapDisjoint A B m0 m2. Proof. unfold MapDisjoint, in_dom in |- *. intros. elim (option_sum _ (MapGet A m0 a)). intro H2. elim H2. intros y H3. elim (option_sum _ (MapGet B m2 a)). intro H4. elim H4. intros y' H5. apply (H (Ndouble a)). rewrite (MapGet_M2_bit_0_0 _ (Ndouble a) (Ndouble_bit0 a) m0 m1). rewrite (Ndouble_div2 a). rewrite H3. reflexivity. rewrite (MapGet_M2_bit_0_0 _ (Ndouble a) (Ndouble_bit0 a) m2 m3). rewrite (Ndouble_div2 a). rewrite H5. reflexivity. intro H4. rewrite H4 in H1. discriminate H1. intro H2. rewrite H2 in H0. discriminate H0. Qed. Lemma MapDisjoint_M2_r : forall (m0 m1:Map A) (m2 m3:Map B), MapDisjoint A B (M2 A m0 m1) (M2 B m2 m3) -> MapDisjoint A B m1 m3. Proof. unfold MapDisjoint, in_dom in |- *. intros. elim (option_sum _ (MapGet A m1 a)). intro H2. elim H2. intros y H3. elim (option_sum _ (MapGet B m3 a)). intro H4. elim H4. intros y' H5. apply (H (Ndouble_plus_one a)). rewrite (MapGet_M2_bit_0_1 _ (Ndouble_plus_one a) (Ndouble_plus_one_bit0 a) m0 m1). rewrite (Ndouble_plus_one_div2 a). rewrite H3. reflexivity. rewrite (MapGet_M2_bit_0_1 _ (Ndouble_plus_one a) (Ndouble_plus_one_bit0 a) m2 m3). rewrite (Ndouble_plus_one_div2 a). rewrite H5. reflexivity. intro H4. rewrite H4 in H1. discriminate H1. intro H2. rewrite H2 in H0. discriminate H0. Qed. Lemma MapDisjoint_M2 : forall (m0 m1:Map A) (m2 m3:Map B), MapDisjoint A B m0 m2 -> MapDisjoint A B m1 m3 -> MapDisjoint A B (M2 A m0 m1) (M2 B m2 m3). Proof. unfold MapDisjoint, in_dom in |- *. intros. elim (sumbool_of_bool (Nbit0 a)). intro H3. rewrite (MapGet_M2_bit_0_1 A a H3 m0 m1) in H1. rewrite (MapGet_M2_bit_0_1 B a H3 m2 m3) in H2. exact (H0 (Ndiv2 a) H1 H2). intro H3. rewrite (MapGet_M2_bit_0_0 A a H3 m0 m1) in H1. rewrite (MapGet_M2_bit_0_0 B a H3 m2 m3) in H2. exact (H (Ndiv2 a) H1 H2). Qed. Lemma MapDisjoint_M1_l : forall (m:Map A) (a:ad) (y:B), MapDisjoint B A (M1 B a y) m -> in_dom A a m = false. Proof. unfold MapDisjoint in |- *. intros. elim (sumbool_of_bool (in_dom A a m)). intro H0. elim (H a (in_dom_M1_1 B a y) H0). trivial. Qed. Lemma MapDisjoint_M1_r : forall (m:Map A) (a:ad) (y:B), MapDisjoint A B m (M1 B a y) -> in_dom A a m = false. Proof. unfold MapDisjoint in |- *. intros. elim (sumbool_of_bool (in_dom A a m)). intro H0. elim (H a H0 (in_dom_M1_1 B a y)). trivial. Qed. Lemma MapDisjoint_M1_conv_l : forall (m:Map A) (a:ad) (y:B), in_dom A a m = false -> MapDisjoint B A (M1 B a y) m. Proof. unfold MapDisjoint in |- *. intros. rewrite (in_dom_M1_2 B a a0 y H0) in H. rewrite H1 in H. discriminate H. Qed. Lemma MapDisjoint_M1_conv_r : forall (m:Map A) (a:ad) (y:B), in_dom A a m = false -> MapDisjoint A B m (M1 B a y). Proof. unfold MapDisjoint in |- *. intros. rewrite (in_dom_M1_2 B a a0 y H1) in H. rewrite H0 in H. discriminate H. Qed. Lemma MapDisjoint_sym : forall (m:Map A) (m':Map B), MapDisjoint A B m m' -> MapDisjoint B A m' m. Proof. unfold MapDisjoint in |- *. intros. exact (H _ H1 H0). Qed. Lemma MapDisjoint_empty : forall m:Map A, MapDisjoint A A m m -> eqmap A m (M0 A). Proof. unfold eqmap, eqm in |- *. intros. rewrite <- (MapDomRestrTo_idempotent A m a). exact (MapDisjoint_imp_2 A A m m H a). Qed. Lemma MapDelta_disjoint : forall m m':Map A, MapDisjoint A A m m' -> eqmap A (MapDelta A m m') (MapMerge A m m'). Proof. intros. apply eqmap_trans with (m' := MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m m')). apply MapDelta_as_DomRestrBy. apply eqmap_trans with (m' := MapDomRestrBy A A (MapMerge A m m') (M0 A)). apply MapDomRestrBy_ext. apply eqmap_refl. exact (MapDisjoint_imp_2 A A m m' H). apply MapDomRestrBy_m_empty. Qed. Variable C : Set. Lemma MapDomRestr_disjoint : forall (m:Map A) (m':Map B) (m'':Map C), MapDisjoint A B (MapDomRestrTo A C m m'') (MapDomRestrBy B C m' m''). Proof. unfold MapDisjoint in |- *. intros m m' m'' a. rewrite in_dom_restrto. rewrite in_dom_restrby. intros. elim (andb_prop _ _ H). elim (andb_prop _ _ H0). intros. rewrite H4 in H2. discriminate H2. Qed. Lemma MapDelta_RestrTo_disjoint : forall m m':Map A, MapDisjoint A A (MapDelta A m m') (MapDomRestrTo A A m m'). Proof. unfold MapDisjoint in |- *. intros m m' a. rewrite in_dom_delta. rewrite in_dom_restrto. intros. elim (andb_prop _ _ H0). intros. rewrite H1 in H. rewrite H2 in H. discriminate H. Qed. Lemma MapDelta_RestrTo_disjoint_2 : forall m m':Map A, MapDisjoint A A (MapDelta A m m') (MapDomRestrTo A A m' m). Proof. unfold MapDisjoint in |- *. intros m m' a. rewrite in_dom_delta. rewrite in_dom_restrto. intros. elim (andb_prop _ _ H0). intros. rewrite H1 in H. rewrite H2 in H. discriminate H. Qed. Variable D : Set. Lemma MapSubset_Disjoint : forall (m:Map A) (m':Map B) (m'':Map C) (m''':Map D), MapSubset _ _ m m' -> MapSubset _ _ m'' m''' -> MapDisjoint _ _ m' m''' -> MapDisjoint _ _ m m''. Proof. unfold MapSubset, MapDisjoint in |- *. intros. exact (H1 _ (H _ H2) (H0 _ H3)). Qed. Lemma MapSubset_Disjoint_l : forall (m:Map A) (m':Map B) (m'':Map C), MapSubset _ _ m m' -> MapDisjoint _ _ m' m'' -> MapDisjoint _ _ m m''. Proof. unfold MapSubset, MapDisjoint in |- *. intros. exact (H0 _ (H _ H1) H2). Qed. Lemma MapSubset_Disjoint_r : forall (m:Map A) (m'':Map C) (m''':Map D), MapSubset _ _ m'' m''' -> MapDisjoint _ _ m m''' -> MapDisjoint _ _ m m''. Proof. unfold MapSubset, MapDisjoint in |- *. intros. exact (H0 _ H1 (H _ H2)). Qed. End MapDisjointExtra.