(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* false | a' :: l' => orb (Neqb a a') (ad_in_list a l') end. Fixpoint ad_list_stutters (l:list ad) : bool := match l with | nil => false | a :: l' => orb (ad_in_list a l') (ad_list_stutters l') end. Lemma ad_in_list_forms_circuit : forall (x:ad) (l:list ad), ad_in_list x l = true -> {l1 : list ad & {l2 : list ad | l = l1 ++ x :: l2}}. Proof. simple induction l. intro. discriminate H. intros. elim (sumbool_of_bool (Neqb x a)). intro H1. simpl in H0. split with (nil (A:=ad)). split with l0. rewrite (Neqb_complete _ _ H1). reflexivity. intro H2. simpl in H0. rewrite H2 in H0. simpl in H0. elim (H H0). intros l'1 H3. split with (a :: l'1). elim H3. intros l2 H4. split with l2. rewrite H4. reflexivity. Qed. Lemma ad_list_stutters_has_circuit : forall l:list ad, ad_list_stutters l = true -> {x : ad & {l0 : list ad & {l1 : list ad & {l2 : list ad | l = l0 ++ x :: l1 ++ x :: l2}}}}. Proof. simple induction l. intro. discriminate H. intros. simpl in H0. elim (orb_true_elim _ _ H0). intro H1. split with a. split with (nil (A:=ad)). simpl in |- *. elim (ad_in_list_forms_circuit a l0 H1). intros l1 H2. split with l1. elim H2. intros l2 H3. split with l2. rewrite H3. reflexivity. intro H1. elim (H H1). intros x H2. split with x. elim H2. intros l1 H3. split with (a :: l1). elim H3. intros l2 H4. split with l2. elim H4. intros l3 H5. split with l3. rewrite H5. reflexivity. Qed. Fixpoint Elems (l:list ad) : FSet := match l with | nil => M0 unit | a :: l' => MapPut _ (Elems l') a tt end. Lemma Elems_canon : forall l:list ad, mapcanon _ (Elems l). Proof. simple induction l. exact (M0_canon unit). intros. simpl in |- *. apply MapPut_canon. assumption. Qed. Lemma Elems_app : forall l l':list ad, Elems (l ++ l') = FSetUnion (Elems l) (Elems l'). Proof. simple induction l. trivial. intros. simpl in |- *. rewrite (MapPut_as_Merge_c unit (Elems l0)). rewrite (MapPut_as_Merge_c unit (Elems (l0 ++ l'))). change (FSetUnion (Elems (l0 ++ l')) (M1 unit a tt) = FSetUnion (FSetUnion (Elems l0) (M1 unit a tt)) (Elems l')) in |- *. rewrite FSetUnion_comm_c. rewrite (FSetUnion_comm_c (Elems l0) (M1 unit a tt)). rewrite FSetUnion_assoc_c. rewrite (H l'). reflexivity. apply M1_canon. apply Elems_canon. apply Elems_canon. apply Elems_canon. apply M1_canon. apply Elems_canon. apply M1_canon. apply Elems_canon. apply Elems_canon. Qed. Lemma Elems_rev : forall l:list ad, Elems (rev l) = Elems l. Proof. simple induction l. trivial. intros. simpl in |- *. rewrite Elems_app. simpl in |- *. rewrite (MapPut_as_Merge_c unit (Elems l0)). rewrite H. reflexivity. apply Elems_canon. Qed. Lemma ad_in_elems_in_list : forall (l:list ad) (a:ad), in_FSet a (Elems l) = ad_in_list a l. Proof. simple induction l. trivial. simpl in |- *. unfold in_FSet in |- *. intros. rewrite (in_dom_put _ (Elems l0) a tt a0). rewrite (H a0). reflexivity. Qed. Lemma ad_list_not_stutters_card : forall l:list ad, ad_list_stutters l = false -> length l = MapCard _ (Elems l). Proof. simple induction l. trivial. simpl in |- *. intros. rewrite MapCard_Put_2_conv. rewrite H. reflexivity. elim (orb_false_elim _ _ H0). trivial. elim (sumbool_of_bool (in_FSet a (Elems l0))). rewrite ad_in_elems_in_list. intro H1. rewrite H1 in H0. discriminate H0. exact (in_dom_none unit (Elems l0) a). Qed. Lemma ad_list_card : forall l:list ad, MapCard _ (Elems l) <= length l. Proof. simple induction l. trivial. intros. simpl in |- *. apply le_trans with (m := S (MapCard _ (Elems l0))). apply MapCard_Put_ub. apply le_n_S. assumption. Qed. Lemma ad_list_stutters_card : forall l:list ad, ad_list_stutters l = true -> MapCard _ (Elems l) < length l. Proof. simple induction l. intro. discriminate H. intros. simpl in |- *. simpl in H0. elim (orb_true_elim _ _ H0). intro H1. rewrite <- (ad_in_elems_in_list l0 a) in H1. elim (in_dom_some _ _ _ H1). intros y H2. rewrite (MapCard_Put_1_conv _ _ _ _ tt H2). apply le_lt_trans with (m := length l0). apply ad_list_card. apply lt_n_Sn. intro H1. apply le_lt_trans with (m := S (MapCard _ (Elems l0))). apply MapCard_Put_ub. apply lt_n_S. apply H. assumption. Qed. Lemma ad_list_not_stutters_card_conv : forall l:list ad, length l = MapCard _ (Elems l) -> ad_list_stutters l = false. Proof. intros. elim (sumbool_of_bool (ad_list_stutters l)). intro H0. cut (MapCard _ (Elems l) < length l). intro. rewrite H in H1. elim (lt_irrefl _ H1). exact (ad_list_stutters_card _ H0). trivial. Qed. Lemma ad_list_stutters_card_conv : forall l:list ad, MapCard _ (Elems l) < length l -> ad_list_stutters l = true. Proof. intros. elim (sumbool_of_bool (ad_list_stutters l)). trivial. intro H0. rewrite (ad_list_not_stutters_card _ H0) in H. elim (lt_irrefl _ H). Qed. Lemma ad_in_list_l : forall (l l':list ad) (a:ad), ad_in_list a l = true -> ad_in_list a (l ++ l') = true. Proof. simple induction l. intros. discriminate H. intros. simpl in |- *. simpl in H0. elim (orb_true_elim _ _ H0). intro H1. rewrite H1. reflexivity. intro H1. rewrite (H l' a0 H1). apply orb_b_true. Qed. Lemma ad_list_stutters_app_l : forall l l':list ad, ad_list_stutters l = true -> ad_list_stutters (l ++ l') = true. Proof. simple induction l. intros. discriminate H. intros. simpl in |- *. simpl in H0. elim (orb_true_elim _ _ H0). intro H1. rewrite (ad_in_list_l l0 l' a H1). reflexivity. intro H1. rewrite (H l' H1). apply orb_b_true. Qed. Lemma ad_in_list_r : forall (l l':list ad) (a:ad), ad_in_list a l' = true -> ad_in_list a (l ++ l') = true. Proof. simple induction l. trivial. intros. simpl in |- *. rewrite (H l' a0 H0). apply orb_b_true. Qed. Lemma ad_list_stutters_app_r : forall l l':list ad, ad_list_stutters l' = true -> ad_list_stutters (l ++ l') = true. Proof. simple induction l. trivial. intros. simpl in |- *. rewrite (H l' H0). apply orb_b_true. Qed. Lemma ad_list_stutters_app_conv_l : forall l l':list ad, ad_list_stutters (l ++ l') = false -> ad_list_stutters l = false. Proof. intros. elim (sumbool_of_bool (ad_list_stutters l)). intro H0. rewrite (ad_list_stutters_app_l l l' H0) in H. discriminate H. trivial. Qed. Lemma ad_list_stutters_app_conv_r : forall l l':list ad, ad_list_stutters (l ++ l') = false -> ad_list_stutters l' = false. Proof. intros. elim (sumbool_of_bool (ad_list_stutters l')). intro H0. rewrite (ad_list_stutters_app_r l l' H0) in H. discriminate H. trivial. Qed. Lemma ad_in_list_app_1 : forall (l l':list ad) (x:ad), ad_in_list x (l ++ x :: l') = true. Proof. simple induction l. simpl in |- *. intros. rewrite (Neqb_correct x). reflexivity. intros. simpl in |- *. rewrite (H l' x). apply orb_b_true. Qed. Lemma ad_in_list_app : forall (l l':list ad) (x:ad), ad_in_list x (l ++ l') = orb (ad_in_list x l) (ad_in_list x l'). Proof. simple induction l. trivial. intros. simpl in |- *. rewrite <- orb_assoc. rewrite (H l' x). reflexivity. Qed. Lemma ad_in_list_rev : forall (l:list ad) (x:ad), ad_in_list x (rev l) = ad_in_list x l. Proof. simple induction l. trivial. intros. simpl in |- *. rewrite ad_in_list_app. rewrite (H x). simpl in |- *. rewrite orb_b_false. apply orb_comm. Qed. Lemma ad_list_has_circuit_stutters : forall (l0 l1 l2:list ad) (x:ad), ad_list_stutters (l0 ++ x :: l1 ++ x :: l2) = true. Proof. simple induction l0. simpl in |- *. intros. rewrite (ad_in_list_app_1 l1 l2 x). reflexivity. intros. simpl in |- *. rewrite (H l1 l2 x). apply orb_b_true. Qed. Lemma ad_list_stutters_prev_l : forall (l l':list ad) (x:ad), ad_in_list x l = true -> ad_list_stutters (l ++ x :: l') = true. Proof. intros. elim (ad_in_list_forms_circuit _ _ H). intros l0 H0. elim H0. intros l1 H1. rewrite H1. rewrite app_ass. simpl in |- *. apply ad_list_has_circuit_stutters. Qed. Lemma ad_list_stutters_prev_conv_l : forall (l l':list ad) (x:ad), ad_list_stutters (l ++ x :: l') = false -> ad_in_list x l = false. Proof. intros. elim (sumbool_of_bool (ad_in_list x l)). intro H0. rewrite (ad_list_stutters_prev_l l l' x H0) in H. discriminate H. trivial. Qed. Lemma ad_list_stutters_prev_r : forall (l l':list ad) (x:ad), ad_in_list x l' = true -> ad_list_stutters (l ++ x :: l') = true. Proof. intros. elim (ad_in_list_forms_circuit _ _ H). intros l0 H0. elim H0. intros l1 H1. rewrite H1. apply ad_list_has_circuit_stutters. Qed. Lemma ad_list_stutters_prev_conv_r : forall (l l':list ad) (x:ad), ad_list_stutters (l ++ x :: l') = false -> ad_in_list x l' = false. Proof. intros. elim (sumbool_of_bool (ad_in_list x l')). intro H0. rewrite (ad_list_stutters_prev_r l l' x H0) in H. discriminate H. trivial. Qed. Lemma ad_list_Elems : forall l l':list ad, MapCard _ (Elems l) = MapCard _ (Elems l') -> length l = length l' -> ad_list_stutters l = ad_list_stutters l'. Proof. intros. elim (sumbool_of_bool (ad_list_stutters l)). intro H1. rewrite H1. apply sym_eq. apply ad_list_stutters_card_conv. rewrite <- H. rewrite <- H0. apply ad_list_stutters_card. assumption. intro H1. rewrite H1. apply sym_eq. apply ad_list_not_stutters_card_conv. rewrite <- H. rewrite <- H0. apply ad_list_not_stutters_card. assumption. Qed. Lemma ad_list_app_length : forall l l':list ad, length (l ++ l') = length l + length l'. Proof. simple induction l. trivial. intros. simpl in |- *. rewrite (H l'). reflexivity. Qed. Lemma ad_list_stutters_permute : forall l l':list ad, ad_list_stutters (l ++ l') = ad_list_stutters (l' ++ l). Proof. intros. apply ad_list_Elems. rewrite Elems_app. rewrite Elems_app. rewrite (FSetUnion_comm_c _ _ (Elems_canon l) (Elems_canon l')). reflexivity. rewrite ad_list_app_length. rewrite ad_list_app_length. apply plus_comm. Qed. Lemma ad_list_rev_length : forall l:list ad, length (rev l) = length l. Proof. simple induction l. trivial. intros. simpl in |- *. rewrite ad_list_app_length. simpl in |- *. rewrite H. rewrite <- plus_Snm_nSm. rewrite <- plus_n_O. reflexivity. Qed. Lemma ad_list_stutters_rev : forall l:list ad, ad_list_stutters (rev l) = ad_list_stutters l. Proof. intros. apply ad_list_Elems. rewrite Elems_rev. reflexivity. apply ad_list_rev_length. Qed. Lemma ad_list_app_rev : forall (l l':list ad) (x:ad), rev l ++ x :: l' = rev (x :: l) ++ l'. Proof. simple induction l. trivial. intros. simpl in |- *. rewrite (app_ass (rev l0) (a :: nil) (x :: l')). simpl in |- *. rewrite (H (x :: l') a). simpl in |- *. rewrite (app_ass (rev l0) (a :: nil) (x :: nil)). simpl in |- *. rewrite app_ass. simpl in |- *. rewrite app_ass. reflexivity. Qed. Section ListOfDomDef. Variable A : Set. Definition ad_list_of_dom := MapFold A (list ad) nil (app (A:=ad)) (fun (a:ad) (_:A) => a :: nil). Lemma ad_in_list_of_dom_in_dom : forall (m:Map A) (a:ad), ad_in_list a (ad_list_of_dom m) = in_dom A a m. Proof. unfold ad_list_of_dom in |- *. intros. rewrite (MapFold_distr_l A (list ad) nil (app (A:=ad)) bool false orb ad (fun (a:ad) (l:list ad) => ad_in_list a l) ( fun c:ad => refl_equal _) ad_in_list_app (fun (a0:ad) (_:A) => a0 :: nil) m a). simpl in |- *. rewrite (MapFold_orb A (fun (a0:ad) (_:A) => orb (Neqb a a0) false) m). elim (option_sum _ (MapSweep A (fun (a0:ad) (_:A) => orb (Neqb a a0) false) m)). intro H. elim H. intro r. elim r. intros a0 y H0. rewrite H0. unfold in_dom in |- *. elim (orb_prop _ _ (MapSweep_semantics_1 _ _ _ _ _ H0)). intro H1. rewrite (Neqb_complete _ _ H1). rewrite (MapSweep_semantics_2 A _ _ _ _ H0). reflexivity. intro H1. discriminate H1. intro H. rewrite H. elim (sumbool_of_bool (in_dom A a m)). intro H0. elim (in_dom_some A m a H0). intros y H1. elim (orb_false_elim _ _ (MapSweep_semantics_3 _ _ _ H _ _ H1)). intro H2. rewrite (Neqb_correct a) in H2. discriminate H2. exact (sym_eq (y:=_)). Qed. Lemma Elems_of_list_of_dom : forall m:Map A, eqmap unit (Elems (ad_list_of_dom m)) (MapDom A m). Proof. unfold eqmap, eqm in |- *. intros. elim (sumbool_of_bool (in_FSet a (Elems (ad_list_of_dom m)))). intro H. elim (in_dom_some _ _ _ H). intro t. elim t. intro H0. rewrite (ad_in_elems_in_list (ad_list_of_dom m) a) in H. rewrite (ad_in_list_of_dom_in_dom m a) in H. rewrite (MapDom_Dom A m a) in H. elim (in_dom_some _ _ _ H). intro t'. elim t'. intro H1. rewrite H1. assumption. intro H. rewrite (in_dom_none _ _ _ H). rewrite (ad_in_elems_in_list (ad_list_of_dom m) a) in H. rewrite (ad_in_list_of_dom_in_dom m a) in H. rewrite (MapDom_Dom A m a) in H. rewrite (in_dom_none _ _ _ H). reflexivity. Qed. Lemma Elems_of_list_of_dom_c : forall m:Map A, mapcanon A m -> Elems (ad_list_of_dom m) = MapDom A m. Proof. intros. apply (mapcanon_unique unit). apply Elems_canon. apply MapDom_canon. assumption. apply Elems_of_list_of_dom. Qed. Lemma ad_list_of_dom_card_1 : forall (m:Map A) (pf:ad -> ad), length (MapFold1 A (list ad) nil (app (A:=ad)) (fun (a:ad) (_:A) => a :: nil) pf m) = MapCard A m. Proof. simple induction m; try trivial. simpl in |- *. intros. rewrite ad_list_app_length. rewrite (H (fun a0:ad => pf (Ndouble a0))). rewrite (H0 (fun a0:ad => pf (Ndouble_plus_one a0))). reflexivity. Qed. Lemma ad_list_of_dom_card : forall m:Map A, length (ad_list_of_dom m) = MapCard A m. Proof. exact (fun m:Map A => ad_list_of_dom_card_1 m (fun a:ad => a)). Qed. Lemma ad_list_of_dom_not_stutters : forall m:Map A, ad_list_stutters (ad_list_of_dom m) = false. Proof. intro. apply ad_list_not_stutters_card_conv. rewrite ad_list_of_dom_card. apply sym_eq. rewrite (MapCard_Dom A m). apply MapCard_ext. exact (Elems_of_list_of_dom m). Qed. End ListOfDomDef. Lemma ad_list_of_dom_Dom_1 : forall (A:Set) (m:Map A) (pf:ad -> ad), MapFold1 A (list ad) nil (app (A:=ad)) (fun (a:ad) (_:A) => a :: nil) pf m = MapFold1 unit (list ad) nil (app (A:=ad)) (fun (a:ad) (_:unit) => a :: nil) pf (MapDom A m). Proof. simple induction m; try trivial. simpl in |- *. intros. rewrite (H (fun a0:ad => pf (Ndouble a0))). rewrite (H0 (fun a0:ad => pf (Ndouble_plus_one a0))). reflexivity. Qed. Lemma ad_list_of_dom_Dom : forall (A:Set) (m:Map A), ad_list_of_dom A m = ad_list_of_dom unit (MapDom A m). Proof. intros. exact (ad_list_of_dom_Dom_1 A m (fun a0:ad => a0)). Qed. End MapLists.