(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* option A, eqm A f f' -> eqm A f' f. Proof. unfold eqm in |- *. intros. rewrite H. reflexivity. Qed. Lemma eqm_refl : forall f:ad -> option A, eqm A f f. Proof. unfold eqm in |- *. trivial. Qed. Lemma eqm_trans : forall f f' f'':ad -> option A, eqm A f f' -> eqm A f' f'' -> eqm A f f''. Proof. unfold eqm in |- *. intros. rewrite H. exact (H0 a). Qed. Definition eqmap (m m':Map A) := eqm A (MapGet A m) (MapGet A m'). Lemma eqmap_sym : forall m m':Map A, eqmap m m' -> eqmap m' m. Proof. intros. unfold eqmap in |- *. apply eqm_sym. assumption. Qed. Lemma eqmap_refl : forall m:Map A, eqmap m m. Proof. intros. unfold eqmap in |- *. apply eqm_refl. Qed. Lemma eqmap_trans : forall m m' m'':Map A, eqmap m m' -> eqmap m' m'' -> eqmap m m''. Proof. intros. exact (eqm_trans (MapGet A m) (MapGet A m') (MapGet A m'') H H0). Qed. Lemma MapPut_as_Merge : forall (m:Map A) (a:ad) (y:A), eqmap (MapPut A m a y) (MapMerge A m (M1 A a y)). Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapPut_semantics A m a y a0). rewrite (MapMerge_semantics A m (M1 A a y) a0). unfold MapGet at 2 in |- *. elim (sumbool_of_bool (ad_eq a a0)); intro H; rewrite H; reflexivity. Qed. Lemma MapPut_ext : forall m m':Map A, eqmap m m' -> forall (a:ad) (y:A), eqmap (MapPut A m a y) (MapPut A m' a y). Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapPut_semantics A m' a y a0). rewrite (MapPut_semantics A m a y a0). case (ad_eq a a0); [ reflexivity | apply H ]. Qed. Lemma MapPut_behind_as_Merge : forall (m:Map A) (a:ad) (y:A), eqmap (MapPut_behind A m a y) (MapMerge A (M1 A a y) m). Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapPut_behind_semantics A m a y a0). rewrite (MapMerge_semantics A (M1 A a y) m a0). reflexivity. Qed. Lemma MapPut_behind_ext : forall m m':Map A, eqmap m m' -> forall (a:ad) (y:A), eqmap (MapPut_behind A m a y) (MapPut_behind A m' a y). Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapPut_behind_semantics A m' a y a0). rewrite (MapPut_behind_semantics A m a y a0). rewrite (H a0). reflexivity. Qed. Lemma MapMerge_empty_m_1 : forall m:Map A, MapMerge A (M0 A) m = m. Proof. trivial. Qed. Lemma MapMerge_empty_m : forall m:Map A, eqmap (MapMerge A (M0 A) m) m. Proof. unfold eqmap, eqm in |- *. trivial. Qed. Lemma MapMerge_m_empty_1 : forall m:Map A, MapMerge A m (M0 A) = m. Proof. simple induction m; trivial. Qed. Lemma MapMerge_m_empty : forall m:Map A, eqmap (MapMerge A m (M0 A)) m. Proof. unfold eqmap, eqm in |- *. intros. rewrite MapMerge_m_empty_1. reflexivity. Qed. Lemma MapMerge_empty_l : forall m m':Map A, eqmap (MapMerge A m m') (M0 A) -> eqmap m (M0 A). Proof. unfold eqmap, eqm in |- *. intros. cut (MapGet A (MapMerge A m m') a = MapGet A (M0 A) a). rewrite (MapMerge_semantics A m m' a). case (MapGet A m' a). trivial. intros. discriminate H0. exact (H a). Qed. Lemma MapMerge_empty_r : forall m m':Map A, eqmap (MapMerge A m m') (M0 A) -> eqmap m' (M0 A). Proof. unfold eqmap, eqm in |- *. intros. cut (MapGet A (MapMerge A m m') a = MapGet A (M0 A) a). rewrite (MapMerge_semantics A m m' a). case (MapGet A m' a). trivial. intros. discriminate H0. exact (H a). Qed. Lemma MapMerge_assoc : forall m m' m'':Map A, eqmap (MapMerge A (MapMerge A m m') m'') (MapMerge A m (MapMerge A m' m'')). Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapMerge_semantics A (MapMerge A m m') m'' a). rewrite (MapMerge_semantics A m (MapMerge A m' m'') a). rewrite (MapMerge_semantics A m m' a). rewrite (MapMerge_semantics A m' m'' a). case (MapGet A m'' a); case (MapGet A m' a); trivial. Qed. Lemma MapMerge_idempotent : forall m:Map A, eqmap (MapMerge A m m) m. Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapMerge_semantics A m m a). case (MapGet A m a); trivial. Qed. Lemma MapMerge_ext : forall m1 m2 m'1 m'2:Map A, eqmap m1 m'1 -> eqmap m2 m'2 -> eqmap (MapMerge A m1 m2) (MapMerge A m'1 m'2). Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapMerge_semantics A m1 m2 a). rewrite (MapMerge_semantics A m'1 m'2 a). rewrite (H a). rewrite (H0 a). reflexivity. Qed. Lemma MapMerge_ext_l : forall m1 m'1 m2:Map A, eqmap m1 m'1 -> eqmap (MapMerge A m1 m2) (MapMerge A m'1 m2). Proof. intros. apply MapMerge_ext. assumption. apply eqmap_refl. Qed. Lemma MapMerge_ext_r : forall m1 m2 m'2:Map A, eqmap m2 m'2 -> eqmap (MapMerge A m1 m2) (MapMerge A m1 m'2). Proof. intros. apply MapMerge_ext. apply eqmap_refl. assumption. Qed. Lemma MapMerge_RestrTo_l : forall m m' m'':Map A, eqmap (MapMerge A (MapDomRestrTo A A m m') m'') (MapDomRestrTo A A (MapMerge A m m'') (MapMerge A m' m'')). Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapMerge_semantics A (MapDomRestrTo A A m m') m'' a). rewrite (MapDomRestrTo_semantics A A m m' a). rewrite (MapDomRestrTo_semantics A A (MapMerge A m m'') (MapMerge A m' m'') a) . rewrite (MapMerge_semantics A m' m'' a). rewrite (MapMerge_semantics A m m'' a). case (MapGet A m'' a); case (MapGet A m' a); reflexivity. Qed. Lemma MapRemove_as_RestrBy : forall (m:Map A) (a:ad) (y:B), eqmap (MapRemove A m a) (MapDomRestrBy A B m (M1 B a y)). Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapRemove_semantics A m a a0). rewrite (MapDomRestrBy_semantics A B m (M1 B a y) a0). elim (sumbool_of_bool (ad_eq a a0)). intro H. rewrite H. rewrite (ad_eq_complete a a0 H). rewrite (M1_semantics_1 B a0 y). reflexivity. intro H. rewrite H. rewrite (M1_semantics_2 B a a0 y H). reflexivity. Qed. Lemma MapRemove_ext : forall m m':Map A, eqmap m m' -> forall a:ad, eqmap (MapRemove A m a) (MapRemove A m' a). Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapRemove_semantics A m' a a0). rewrite (MapRemove_semantics A m a a0). case (ad_eq a a0); [ reflexivity | apply H ]. Qed. Lemma MapDomRestrTo_empty_m_1 : forall m:Map B, MapDomRestrTo A B (M0 A) m = M0 A. Proof. trivial. Qed. Lemma MapDomRestrTo_empty_m : forall m:Map B, eqmap (MapDomRestrTo A B (M0 A) m) (M0 A). Proof. unfold eqmap, eqm in |- *. trivial. Qed. Lemma MapDomRestrTo_m_empty_1 : forall m:Map A, MapDomRestrTo A B m (M0 B) = M0 A. Proof. simple induction m; trivial. Qed. Lemma MapDomRestrTo_m_empty : forall m:Map A, eqmap (MapDomRestrTo A B m (M0 B)) (M0 A). Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrTo_m_empty_1 m). reflexivity. Qed. Lemma MapDomRestrTo_assoc : forall (m:Map A) (m':Map B) (m'':Map C), eqmap (MapDomRestrTo A C (MapDomRestrTo A B m m') m'') (MapDomRestrTo A B m (MapDomRestrTo B C m' m'')). Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrTo_semantics A C (MapDomRestrTo A B m m') m'' a). rewrite (MapDomRestrTo_semantics A B m m' a). rewrite (MapDomRestrTo_semantics A B m (MapDomRestrTo B C m' m'') a). rewrite (MapDomRestrTo_semantics B C m' m'' a). case (MapGet C m'' a); case (MapGet B m' a); trivial. Qed. Lemma MapDomRestrTo_idempotent : forall m:Map A, eqmap (MapDomRestrTo A A m m) m. Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrTo_semantics A A m m a). case (MapGet A m a); trivial. Qed. Lemma MapDomRestrTo_Dom : forall (m:Map A) (m':Map B), eqmap (MapDomRestrTo A B m m') (MapDomRestrTo A unit m (MapDom B m')). Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrTo_semantics A B m m' a). rewrite (MapDomRestrTo_semantics A unit m (MapDom B m') a). elim (sumbool_of_bool (in_FSet a (MapDom B m'))). intro H. elim (MapDom_semantics_2 B m' a H). intros y H0. rewrite H0. unfold in_FSet, in_dom in H. generalize H. case (MapGet unit (MapDom B m') a); trivial. intro H1. discriminate H1. intro H. rewrite (MapDom_semantics_4 B m' a H). unfold in_FSet, in_dom in H. generalize H. case (MapGet unit (MapDom B m') a). trivial. intros H0 H1. discriminate H1. Qed. Lemma MapDomRestrBy_empty_m_1 : forall m:Map B, MapDomRestrBy A B (M0 A) m = M0 A. Proof. trivial. Qed. Lemma MapDomRestrBy_empty_m : forall m:Map B, eqmap (MapDomRestrBy A B (M0 A) m) (M0 A). Proof. unfold eqmap, eqm in |- *. trivial. Qed. Lemma MapDomRestrBy_m_empty_1 : forall m:Map A, MapDomRestrBy A B m (M0 B) = m. Proof. simple induction m; trivial. Qed. Lemma MapDomRestrBy_m_empty : forall m:Map A, eqmap (MapDomRestrBy A B m (M0 B)) m. Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrBy_m_empty_1 m). reflexivity. Qed. Lemma MapDomRestrBy_Dom : forall (m:Map A) (m':Map B), eqmap (MapDomRestrBy A B m m') (MapDomRestrBy A unit m (MapDom B m')). Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrBy_semantics A B m m' a). rewrite (MapDomRestrBy_semantics A unit m (MapDom B m') a). elim (sumbool_of_bool (in_FSet a (MapDom B m'))). intro H. elim (MapDom_semantics_2 B m' a H). intros y H0. rewrite H0. unfold in_FSet, in_dom in H. generalize H. case (MapGet unit (MapDom B m') a); trivial. intro H1. discriminate H1. intro H. rewrite (MapDom_semantics_4 B m' a H). unfold in_FSet, in_dom in H. generalize H. case (MapGet unit (MapDom B m') a). trivial. intros H0 H1. discriminate H1. Qed. Lemma MapDomRestrBy_m_m_1 : forall m:Map A, eqmap (MapDomRestrBy A A m m) (M0 A). Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrBy_semantics A A m m a). case (MapGet A m a); trivial. Qed. Lemma MapDomRestrBy_By : forall (m:Map A) (m' m'':Map B), eqmap (MapDomRestrBy A B (MapDomRestrBy A B m m') m'') (MapDomRestrBy A B m (MapMerge B m' m'')). Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrBy_semantics A B (MapDomRestrBy A B m m') m'' a). rewrite (MapDomRestrBy_semantics A B m m' a). rewrite (MapDomRestrBy_semantics A B m (MapMerge B m' m'') a). rewrite (MapMerge_semantics B m' m'' a). case (MapGet B m'' a); case (MapGet B m' a); trivial. Qed. Lemma MapDomRestrBy_By_comm : forall (m:Map A) (m':Map B) (m'':Map C), eqmap (MapDomRestrBy A C (MapDomRestrBy A B m m') m'') (MapDomRestrBy A B (MapDomRestrBy A C m m'') m'). Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrBy_semantics A C (MapDomRestrBy A B m m') m'' a). rewrite (MapDomRestrBy_semantics A B m m' a). rewrite (MapDomRestrBy_semantics A B (MapDomRestrBy A C m m'') m' a). rewrite (MapDomRestrBy_semantics A C m m'' a). case (MapGet C m'' a); case (MapGet B m' a); trivial. Qed. Lemma MapDomRestrBy_To : forall (m:Map A) (m':Map B) (m'':Map C), eqmap (MapDomRestrBy A C (MapDomRestrTo A B m m') m'') (MapDomRestrTo A B m (MapDomRestrBy B C m' m'')). Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrBy_semantics A C (MapDomRestrTo A B m m') m'' a). rewrite (MapDomRestrTo_semantics A B m m' a). rewrite (MapDomRestrTo_semantics A B m (MapDomRestrBy B C m' m'') a). rewrite (MapDomRestrBy_semantics B C m' m'' a). case (MapGet C m'' a); case (MapGet B m' a); trivial. Qed. Lemma MapDomRestrBy_To_comm : forall (m:Map A) (m':Map B) (m'':Map C), eqmap (MapDomRestrBy A C (MapDomRestrTo A B m m') m'') (MapDomRestrTo A B (MapDomRestrBy A C m m'') m'). Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrBy_semantics A C (MapDomRestrTo A B m m') m'' a). rewrite (MapDomRestrTo_semantics A B m m' a). rewrite (MapDomRestrTo_semantics A B (MapDomRestrBy A C m m'') m' a). rewrite (MapDomRestrBy_semantics A C m m'' a). case (MapGet C m'' a); case (MapGet B m' a); trivial. Qed. Lemma MapDomRestrTo_By : forall (m:Map A) (m':Map B) (m'':Map C), eqmap (MapDomRestrTo A C (MapDomRestrBy A B m m') m'') (MapDomRestrTo A C m (MapDomRestrBy C B m'' m')). Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrTo_semantics A C (MapDomRestrBy A B m m') m'' a). rewrite (MapDomRestrBy_semantics A B m m' a). rewrite (MapDomRestrTo_semantics A C m (MapDomRestrBy C B m'' m') a). rewrite (MapDomRestrBy_semantics C B m'' m' a). case (MapGet C m'' a); case (MapGet B m' a); trivial. Qed. Lemma MapDomRestrTo_By_comm : forall (m:Map A) (m':Map B) (m'':Map C), eqmap (MapDomRestrTo A C (MapDomRestrBy A B m m') m'') (MapDomRestrBy A B (MapDomRestrTo A C m m'') m'). Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrTo_semantics A C (MapDomRestrBy A B m m') m'' a). rewrite (MapDomRestrBy_semantics A B m m' a). rewrite (MapDomRestrBy_semantics A B (MapDomRestrTo A C m m'') m' a). rewrite (MapDomRestrTo_semantics A C m m'' a). case (MapGet C m'' a); case (MapGet B m' a); trivial. Qed. Lemma MapDomRestrTo_To_comm : forall (m:Map A) (m':Map B) (m'':Map C), eqmap (MapDomRestrTo A C (MapDomRestrTo A B m m') m'') (MapDomRestrTo A B (MapDomRestrTo A C m m'') m'). Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrTo_semantics A C (MapDomRestrTo A B m m') m'' a). rewrite (MapDomRestrTo_semantics A B m m' a). rewrite (MapDomRestrTo_semantics A B (MapDomRestrTo A C m m'') m' a). rewrite (MapDomRestrTo_semantics A C m m'' a). case (MapGet C m'' a); case (MapGet B m' a); trivial. Qed. Lemma MapMerge_DomRestrTo : forall (m m':Map A) (m'':Map B), eqmap (MapDomRestrTo A B (MapMerge A m m') m'') (MapMerge A (MapDomRestrTo A B m m'') (MapDomRestrTo A B m' m'')). Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrTo_semantics A B (MapMerge A m m') m'' a). rewrite (MapMerge_semantics A m m' a). rewrite (MapMerge_semantics A (MapDomRestrTo A B m m'') (MapDomRestrTo A B m' m'') a). rewrite (MapDomRestrTo_semantics A B m' m'' a). rewrite (MapDomRestrTo_semantics A B m m'' a). case (MapGet B m'' a); case (MapGet A m' a); trivial. Qed. Lemma MapMerge_DomRestrBy : forall (m m':Map A) (m'':Map B), eqmap (MapDomRestrBy A B (MapMerge A m m') m'') (MapMerge A (MapDomRestrBy A B m m'') (MapDomRestrBy A B m' m'')). Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrBy_semantics A B (MapMerge A m m') m'' a). rewrite (MapMerge_semantics A m m' a). rewrite (MapMerge_semantics A (MapDomRestrBy A B m m'') (MapDomRestrBy A B m' m'') a). rewrite (MapDomRestrBy_semantics A B m' m'' a). rewrite (MapDomRestrBy_semantics A B m m'' a). case (MapGet B m'' a); case (MapGet A m' a); trivial. Qed. Lemma MapDelta_empty_m_1 : forall m:Map A, MapDelta A (M0 A) m = m. Proof. trivial. Qed. Lemma MapDelta_empty_m : forall m:Map A, eqmap (MapDelta A (M0 A) m) m. Proof. unfold eqmap, eqm in |- *. trivial. Qed. Lemma MapDelta_m_empty_1 : forall m:Map A, MapDelta A m (M0 A) = m. Proof. simple induction m; trivial. Qed. Lemma MapDelta_m_empty : forall m:Map A, eqmap (MapDelta A m (M0 A)) m. Proof. unfold eqmap, eqm in |- *. intros. rewrite MapDelta_m_empty_1. reflexivity. Qed. Lemma MapDelta_nilpotent : forall m:Map A, eqmap (MapDelta A m m) (M0 A). Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapDelta_semantics A m m a). case (MapGet A m a); trivial. Qed. Lemma MapDelta_as_Merge : forall m m':Map A, eqmap (MapDelta A m m') (MapMerge A (MapDomRestrBy A A m m') (MapDomRestrBy A A m' m)). Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapDelta_semantics A m m' a). rewrite (MapMerge_semantics A (MapDomRestrBy A A m m') ( MapDomRestrBy A A m' m) a). rewrite (MapDomRestrBy_semantics A A m' m a). rewrite (MapDomRestrBy_semantics A A m m' a). case (MapGet A m a); case (MapGet A m' a); trivial. Qed. Lemma MapDelta_as_DomRestrBy : forall m m':Map A, eqmap (MapDelta A m m') (MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m m')). Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapDelta_semantics A m m' a). rewrite (MapDomRestrBy_semantics A A (MapMerge A m m') ( MapDomRestrTo A A m m') a). rewrite (MapDomRestrTo_semantics A A m m' a). rewrite (MapMerge_semantics A m m' a). case (MapGet A m a); case (MapGet A m' a); trivial. Qed. Lemma MapDelta_as_DomRestrBy_2 : forall m m':Map A, eqmap (MapDelta A m m') (MapDomRestrBy A A (MapMerge A m m') (MapDomRestrTo A A m' m)). Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapDelta_semantics A m m' a). rewrite (MapDomRestrBy_semantics A A (MapMerge A m m') ( MapDomRestrTo A A m' m) a). rewrite (MapDomRestrTo_semantics A A m' m a). rewrite (MapMerge_semantics A m m' a). case (MapGet A m a); case (MapGet A m' a); trivial. Qed. Lemma MapDelta_sym : forall m m':Map A, eqmap (MapDelta A m m') (MapDelta A m' m). Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapDelta_semantics A m m' a). rewrite (MapDelta_semantics A m' m a). case (MapGet A m a); case (MapGet A m' a); trivial. Qed. Lemma MapDelta_ext : forall m1 m2 m'1 m'2:Map A, eqmap m1 m'1 -> eqmap m2 m'2 -> eqmap (MapDelta A m1 m2) (MapDelta A m'1 m'2). Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapDelta_semantics A m1 m2 a). rewrite (MapDelta_semantics A m'1 m'2 a). rewrite (H a). rewrite (H0 a). reflexivity. Qed. Lemma MapDelta_ext_l : forall m1 m'1 m2:Map A, eqmap m1 m'1 -> eqmap (MapDelta A m1 m2) (MapDelta A m'1 m2). Proof. intros. apply MapDelta_ext. assumption. apply eqmap_refl. Qed. Lemma MapDelta_ext_r : forall m1 m2 m'2:Map A, eqmap m2 m'2 -> eqmap (MapDelta A m1 m2) (MapDelta A m1 m'2). Proof. intros. apply MapDelta_ext. apply eqmap_refl. assumption. Qed. Lemma MapDom_Split_1 : forall (m:Map A) (m':Map B), eqmap m (MapMerge A (MapDomRestrTo A B m m') (MapDomRestrBy A B m m')). Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapMerge_semantics A (MapDomRestrTo A B m m') ( MapDomRestrBy A B m m') a). rewrite (MapDomRestrBy_semantics A B m m' a). rewrite (MapDomRestrTo_semantics A B m m' a). case (MapGet B m' a); case (MapGet A m a); trivial. Qed. Lemma MapDom_Split_2 : forall (m:Map A) (m':Map B), eqmap m (MapMerge A (MapDomRestrBy A B m m') (MapDomRestrTo A B m m')). Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapMerge_semantics A (MapDomRestrBy A B m m') ( MapDomRestrTo A B m m') a). rewrite (MapDomRestrBy_semantics A B m m' a). rewrite (MapDomRestrTo_semantics A B m m' a). case (MapGet B m' a); case (MapGet A m a); trivial. Qed. Lemma MapDom_Split_3 : forall (m:Map A) (m':Map B), eqmap (MapDomRestrTo A A (MapDomRestrTo A B m m') (MapDomRestrBy A B m m')) (M0 A). Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrTo_semantics A A (MapDomRestrTo A B m m') (MapDomRestrBy A B m m') a). rewrite (MapDomRestrBy_semantics A B m m' a). rewrite (MapDomRestrTo_semantics A B m m' a). case (MapGet B m' a); case (MapGet A m a); trivial. Qed. End MapAxioms. Lemma MapDomRestrTo_ext : forall (A B:Set) (m1:Map A) (m2:Map B) (m'1:Map A) (m'2:Map B), eqmap A m1 m'1 -> eqmap B m2 m'2 -> eqmap A (MapDomRestrTo A B m1 m2) (MapDomRestrTo A B m'1 m'2). Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrTo_semantics A B m1 m2 a). rewrite (MapDomRestrTo_semantics A B m'1 m'2 a). rewrite (H a). rewrite (H0 a). reflexivity. Qed. Lemma MapDomRestrTo_ext_l : forall (A B:Set) (m1:Map A) (m2:Map B) (m'1:Map A), eqmap A m1 m'1 -> eqmap A (MapDomRestrTo A B m1 m2) (MapDomRestrTo A B m'1 m2). Proof. intros. apply MapDomRestrTo_ext; [ assumption | apply eqmap_refl ]. Qed. Lemma MapDomRestrTo_ext_r : forall (A B:Set) (m1:Map A) (m2 m'2:Map B), eqmap B m2 m'2 -> eqmap A (MapDomRestrTo A B m1 m2) (MapDomRestrTo A B m1 m'2). Proof. intros. apply MapDomRestrTo_ext; [ apply eqmap_refl | assumption ]. Qed. Lemma MapDomRestrBy_ext : forall (A B:Set) (m1:Map A) (m2:Map B) (m'1:Map A) (m'2:Map B), eqmap A m1 m'1 -> eqmap B m2 m'2 -> eqmap A (MapDomRestrBy A B m1 m2) (MapDomRestrBy A B m'1 m'2). Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapDomRestrBy_semantics A B m1 m2 a). rewrite (MapDomRestrBy_semantics A B m'1 m'2 a). rewrite (H a). rewrite (H0 a). reflexivity. Qed. Lemma MapDomRestrBy_ext_l : forall (A B:Set) (m1:Map A) (m2:Map B) (m'1:Map A), eqmap A m1 m'1 -> eqmap A (MapDomRestrBy A B m1 m2) (MapDomRestrBy A B m'1 m2). Proof. intros. apply MapDomRestrBy_ext; [ assumption | apply eqmap_refl ]. Qed. Lemma MapDomRestrBy_ext_r : forall (A B:Set) (m1:Map A) (m2 m'2:Map B), eqmap B m2 m'2 -> eqmap A (MapDomRestrBy A B m1 m2) (MapDomRestrBy A B m1 m'2). Proof. intros. apply MapDomRestrBy_ext; [ apply eqmap_refl | assumption ]. Qed. Lemma MapDomRestrBy_m_m : forall (A:Set) (m:Map A), eqmap A (MapDomRestrBy A unit m (MapDom A m)) (M0 A). Proof. intros. apply eqmap_trans with (m' := MapDomRestrBy A A m m). apply eqmap_sym. apply MapDomRestrBy_Dom. apply MapDomRestrBy_m_m_1. Qed. Lemma FSetDelta_assoc : forall s s' s'':FSet, eqmap unit (MapDelta _ (MapDelta _ s s') s'') (MapDelta _ s (MapDelta _ s' s'')). Proof. unfold eqmap, eqm in |- *. intros. rewrite (MapDelta_semantics unit (MapDelta unit s s') s'' a). rewrite (MapDelta_semantics unit s s' a). rewrite (MapDelta_semantics unit s (MapDelta unit s' s'') a). rewrite (MapDelta_semantics unit s' s'' a). case (MapGet _ s a); case (MapGet _ s' a); case (MapGet _ s'' a); trivial. intros. elim u. elim u1. reflexivity. Qed. Lemma FSet_ext : forall s s':FSet, (forall a:ad, in_FSet a s = in_FSet a s') -> eqmap unit s s'. Proof. unfold in_FSet, eqmap, eqm in |- *. intros. elim (sumbool_of_bool (in_dom _ a s)). intro H0. elim (in_dom_some _ s a H0). intros y H1. rewrite (H a) in H0. elim (in_dom_some _ s' a H0). intros y' H2. rewrite H1. rewrite H2. elim y. elim y'. reflexivity. intro H0. rewrite (in_dom_none _ s a H0). rewrite (H a) in H0. rewrite (in_dom_none _ s' a H0). reflexivity. Qed. Lemma FSetUnion_comm : forall s s':FSet, eqmap unit (FSetUnion s s') (FSetUnion s' s). Proof. intros. apply FSet_ext. intro. rewrite in_FSet_union. rewrite in_FSet_union. apply orb_comm. Qed. Lemma FSetUnion_assoc : forall s s' s'':FSet, eqmap unit (FSetUnion (FSetUnion s s') s'') (FSetUnion s (FSetUnion s' s'')). Proof. exact (MapMerge_assoc unit). Qed. Lemma FSetUnion_M0_s : forall s:FSet, eqmap unit (FSetUnion (M0 unit) s) s. Proof. exact (MapMerge_empty_m unit). Qed. Lemma FSetUnion_s_M0 : forall s:FSet, eqmap unit (FSetUnion s (M0 unit)) s. Proof. exact (MapMerge_m_empty unit). Qed. Lemma FSetUnion_idempotent : forall s:FSet, eqmap unit (FSetUnion s s) s. Proof. exact (MapMerge_idempotent unit). Qed. Lemma FSetInter_comm : forall s s':FSet, eqmap unit (FSetInter s s') (FSetInter s' s). Proof. intros. apply FSet_ext. intro. rewrite in_FSet_inter. rewrite in_FSet_inter. apply andb_comm. Qed. Lemma FSetInter_assoc : forall s s' s'':FSet, eqmap unit (FSetInter (FSetInter s s') s'') (FSetInter s (FSetInter s' s'')). Proof. exact (MapDomRestrTo_assoc unit unit unit). Qed. Lemma FSetInter_M0_s : forall s:FSet, eqmap unit (FSetInter (M0 unit) s) (M0 unit). Proof. exact (MapDomRestrTo_empty_m unit unit). Qed. Lemma FSetInter_s_M0 : forall s:FSet, eqmap unit (FSetInter s (M0 unit)) (M0 unit). Proof. exact (MapDomRestrTo_m_empty unit unit). Qed. Lemma FSetInter_idempotent : forall s:FSet, eqmap unit (FSetInter s s) s. Proof. exact (MapDomRestrTo_idempotent unit). Qed. Lemma FSetUnion_Inter_l : forall s s' s'':FSet, eqmap unit (FSetUnion (FSetInter s s') s'') (FSetInter (FSetUnion s s'') (FSetUnion s' s'')). Proof. intros. apply FSet_ext. intro. rewrite in_FSet_union. rewrite in_FSet_inter. rewrite in_FSet_inter. rewrite in_FSet_union. rewrite in_FSet_union. case (in_FSet a s); case (in_FSet a s'); case (in_FSet a s''); reflexivity. Qed. Lemma FSetUnion_Inter_r : forall s s' s'':FSet, eqmap unit (FSetUnion s (FSetInter s' s'')) (FSetInter (FSetUnion s s') (FSetUnion s s'')). Proof. intros. apply FSet_ext. intro. rewrite in_FSet_union. rewrite in_FSet_inter. rewrite in_FSet_inter. rewrite in_FSet_union. rewrite in_FSet_union. case (in_FSet a s); case (in_FSet a s'); case (in_FSet a s''); reflexivity. Qed. Lemma FSetInter_Union_l : forall s s' s'':FSet, eqmap unit (FSetInter (FSetUnion s s') s'') (FSetUnion (FSetInter s s'') (FSetInter s' s'')). Proof. intros. apply FSet_ext. intro. rewrite in_FSet_inter. rewrite in_FSet_union. rewrite in_FSet_union. rewrite in_FSet_inter. rewrite in_FSet_inter. case (in_FSet a s); case (in_FSet a s'); case (in_FSet a s''); reflexivity. Qed. Lemma FSetInter_Union_r : forall s s' s'':FSet, eqmap unit (FSetInter s (FSetUnion s' s'')) (FSetUnion (FSetInter s s') (FSetInter s s'')). Proof. intros. apply FSet_ext. intro. rewrite in_FSet_inter. rewrite in_FSet_union. rewrite in_FSet_union. rewrite in_FSet_inter. rewrite in_FSet_inter. case (in_FSet a s); case (in_FSet a s'); case (in_FSet a s''); reflexivity. Qed.