(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* ad_less_1 (ad_div_2 a) (ad_div_2 a') p' | _ => andb (negb (ad_bit_0 a)) (ad_bit_0 a') end. Definition ad_less (a a':ad) := match ad_xor a a' with | ad_z => false | ad_x p => ad_less_1 a a' p end. Lemma ad_bit_0_less : forall a a':ad, ad_bit_0 a = false -> ad_bit_0 a' = true -> ad_less a a' = true. Proof. intros. elim (ad_sum (ad_xor a a')). intro H1. elim H1. intros p H2. unfold ad_less in |- *. rewrite H2. generalize H2. elim p. intros. simpl in |- *. rewrite H. rewrite H0. reflexivity. intros. cut (ad_bit_0 (ad_xor a a') = false). intro. rewrite (ad_xor_bit_0 a a') in H5. rewrite H in H5. rewrite H0 in H5. discriminate H5. rewrite H4. reflexivity. intro. simpl in |- *. rewrite H. rewrite H0. reflexivity. intro H1. cut (ad_bit_0 (ad_xor a a') = false). intro. rewrite (ad_xor_bit_0 a a') in H2. rewrite H in H2. rewrite H0 in H2. discriminate H2. rewrite H1. reflexivity. Qed. Lemma ad_bit_0_gt : forall a a':ad, ad_bit_0 a = true -> ad_bit_0 a' = false -> ad_less a a' = false. Proof. intros. elim (ad_sum (ad_xor a a')). intro H1. elim H1. intros p H2. unfold ad_less in |- *. rewrite H2. generalize H2. elim p. intros. simpl in |- *. rewrite H. rewrite H0. reflexivity. intros. cut (ad_bit_0 (ad_xor a a') = false). intro. rewrite (ad_xor_bit_0 a a') in H5. rewrite H in H5. rewrite H0 in H5. discriminate H5. rewrite H4. reflexivity. intro. simpl in |- *. rewrite H. rewrite H0. reflexivity. intro H1. unfold ad_less in |- *. rewrite H1. reflexivity. Qed. Lemma ad_less_not_refl : forall a:ad, ad_less a a = false. Proof. intro. unfold ad_less in |- *. rewrite (ad_xor_nilpotent a). reflexivity. Qed. Lemma ad_ind_double : forall (a:ad) (P:ad -> Prop), P ad_z -> (forall a:ad, P a -> P (ad_double a)) -> (forall a:ad, P a -> P (ad_double_plus_un a)) -> P a. Proof. intros; elim a. trivial. simple induction p. intros. apply (H1 (ad_x p0)); trivial. intros; apply (H0 (ad_x p0)); trivial. intros; apply (H1 ad_z); assumption. Qed. Lemma ad_rec_double : forall (a:ad) (P:ad -> Set), P ad_z -> (forall a:ad, P a -> P (ad_double a)) -> (forall a:ad, P a -> P (ad_double_plus_un a)) -> P a. Proof. intros; elim a. trivial. simple induction p. intros. apply (H1 (ad_x p0)); trivial. intros; apply (H0 (ad_x p0)); trivial. intros; apply (H1 ad_z); assumption. Qed. Lemma ad_less_def_1 : forall a a':ad, ad_less (ad_double a) (ad_double a') = ad_less a a'. Proof. simple induction a. simple induction a'. reflexivity. trivial. simple induction a'. unfold ad_less in |- *. simpl in |- *. elim p; trivial. unfold ad_less in |- *. simpl in |- *. intro. case (p_xor p p0). reflexivity. trivial. Qed. Lemma ad_less_def_2 : forall a a':ad, ad_less (ad_double_plus_un a) (ad_double_plus_un a') = ad_less a a'. Proof. simple induction a. simple induction a'. reflexivity. trivial. simple induction a'. unfold ad_less in |- *. simpl in |- *. elim p; trivial. unfold ad_less in |- *. simpl in |- *. intro. case (p_xor p p0). reflexivity. trivial. Qed. Lemma ad_less_def_3 : forall a a':ad, ad_less (ad_double a) (ad_double_plus_un a') = true. Proof. intros. apply ad_bit_0_less. apply ad_double_bit_0. apply ad_double_plus_un_bit_0. Qed. Lemma ad_less_def_4 : forall a a':ad, ad_less (ad_double_plus_un a) (ad_double a') = false. Proof. intros. apply ad_bit_0_gt. apply ad_double_plus_un_bit_0. apply ad_double_bit_0. Qed. Lemma ad_less_z : forall a:ad, ad_less a ad_z = false. Proof. simple induction a. reflexivity. unfold ad_less in |- *. intro. rewrite (ad_xor_neutral_right (ad_x p)). elim p; trivial. Qed. Lemma ad_z_less_1 : forall a:ad, ad_less ad_z a = true -> {p : positive | a = ad_x p}. Proof. simple induction a. intro. discriminate H. intros. split with p. reflexivity. Qed. Lemma ad_z_less_2 : forall a:ad, ad_less ad_z a = false -> a = ad_z. Proof. simple induction a. trivial. unfold ad_less in |- *. simpl in |- *. cut (forall p:positive, ad_less_1 ad_z (ad_x p) p = false -> False). intros. elim (H p H0). simple induction p. intros. discriminate H0. intros. exact (H H0). intro. discriminate H. Qed. Lemma ad_less_trans : forall a a' a'':ad, ad_less a a' = true -> ad_less a' a'' = true -> ad_less a a'' = true. Proof. intro a. apply ad_ind_double with (P := fun a:ad => forall a' a'':ad, ad_less a a' = true -> ad_less a' a'' = true -> ad_less a a'' = true). intros. elim (sumbool_of_bool (ad_less ad_z a'')). trivial. intro H1. rewrite (ad_z_less_2 a'' H1) in H0. rewrite (ad_less_z a') in H0. discriminate H0. intros a0 H a'. apply ad_ind_double with (P := fun a':ad => forall a'':ad, ad_less (ad_double a0) a' = true -> ad_less a' a'' = true -> ad_less (ad_double a0) a'' = true). intros. rewrite (ad_less_z (ad_double a0)) in H0. discriminate H0. intros a1 H0 a'' H1. rewrite (ad_less_def_1 a0 a1) in H1. apply ad_ind_double with (P := fun a'':ad => ad_less (ad_double a1) a'' = true -> ad_less (ad_double a0) a'' = true). intro. rewrite (ad_less_z (ad_double a1)) in H2. discriminate H2. intros. rewrite (ad_less_def_1 a1 a2) in H3. rewrite (ad_less_def_1 a0 a2). exact (H a1 a2 H1 H3). intros. apply ad_less_def_3. intros a1 H0 a'' H1. apply ad_ind_double with (P := fun a'':ad => ad_less (ad_double_plus_un a1) a'' = true -> ad_less (ad_double a0) a'' = true). intro. rewrite (ad_less_z (ad_double_plus_un a1)) in H2. discriminate H2. intros. rewrite (ad_less_def_4 a1 a2) in H3. discriminate H3. intros. apply ad_less_def_3. intros a0 H a'. apply ad_ind_double with (P := fun a':ad => forall a'':ad, ad_less (ad_double_plus_un a0) a' = true -> ad_less a' a'' = true -> ad_less (ad_double_plus_un a0) a'' = true). intros. rewrite (ad_less_z (ad_double_plus_un a0)) in H0. discriminate H0. intros. rewrite (ad_less_def_4 a0 a1) in H1. discriminate H1. intros a1 H0 a'' H1. apply ad_ind_double with (P := fun a'':ad => ad_less (ad_double_plus_un a1) a'' = true -> ad_less (ad_double_plus_un a0) a'' = true). intro. rewrite (ad_less_z (ad_double_plus_un a1)) in H2. discriminate H2. intros. rewrite (ad_less_def_4 a1 a2) in H3. discriminate H3. rewrite (ad_less_def_2 a0 a1) in H1. intros. rewrite (ad_less_def_2 a1 a2) in H3. rewrite (ad_less_def_2 a0 a2). exact (H a1 a2 H1 H3). Qed. Fixpoint alist_sorted (l:alist A) : bool := match l with | nil => true | (a, _) :: l' => match l' with | nil => true | (a', y') :: l'' => andb (ad_less a a') (alist_sorted l') end end. Fixpoint alist_nth_ad (n:nat) (l:alist A) {struct l} : ad := match l with | nil => ad_z (* dummy *) | (a, y) :: l' => match n with | O => a | S n' => alist_nth_ad n' l' end end. Definition alist_sorted_1 (l:alist A) := forall n:nat, S (S n) <= length l -> ad_less (alist_nth_ad n l) (alist_nth_ad (S n) l) = true. Lemma alist_sorted_imp_1 : forall l:alist A, alist_sorted l = true -> alist_sorted_1 l. Proof. unfold alist_sorted_1 in |- *. simple induction l. intros. elim (le_Sn_O (S n) H0). intro r. elim r. intros a y. simple induction l0. intros. simpl in H1. elim (le_Sn_O n (le_S_n (S n) 0 H1)). intro r0. elim r0. intros a0 y0. simple induction n. intros. simpl in |- *. simpl in H1. exact (proj1 (andb_prop _ _ H1)). intros. change (ad_less (alist_nth_ad n0 ((a0, y0) :: l1)) (alist_nth_ad (S n0) ((a0, y0) :: l1)) = true) in |- *. apply H0. exact (proj2 (andb_prop _ _ H1)). apply le_S_n. exact H3. Qed. Definition alist_sorted_2 (l:alist A) := forall m n:nat, m < n -> S n <= length l -> ad_less (alist_nth_ad m l) (alist_nth_ad n l) = true. Lemma alist_sorted_1_imp_2 : forall l:alist A, alist_sorted_1 l -> alist_sorted_2 l. Proof. unfold alist_sorted_1, alist_sorted_2, lt in |- *. intros l H m n H0. elim H0. exact (H m). intros. apply ad_less_trans with (a' := alist_nth_ad m0 l). apply H2. apply le_Sn_le. assumption. apply H. assumption. Qed. Lemma alist_sorted_2_imp : forall l:alist A, alist_sorted_2 l -> alist_sorted l = true. Proof. unfold alist_sorted_2, lt in |- *. simple induction l. trivial. intro r. elim r. intros a y. simple induction l0. trivial. intro r0. elim r0. intros a0 y0. intros. change (andb (ad_less a a0) (alist_sorted ((a0, y0) :: l1)) = true) in |- *. apply andb_true_intro. split. apply (H1 0 1). apply le_n. simpl in |- *. apply le_n_S. apply le_n_S. apply le_O_n. apply H0. intros. apply (H1 (S m) (S n)). apply le_n_S. assumption. exact (le_n_S _ _ H3). Qed. Lemma app_length : forall (C:Set) (l l':list C), length (l ++ l') = length l + length l'. Proof. simple induction l. trivial. intros. simpl in |- *. rewrite (H l'). reflexivity. Qed. Lemma aapp_length : forall l l':alist A, length (aapp A l l') = length l + length l'. Proof. exact (app_length (ad * A)). Qed. Lemma alist_nth_ad_aapp_1 : forall (l l':alist A) (n:nat), S n <= length l -> alist_nth_ad n (aapp A l l') = alist_nth_ad n l. Proof. simple induction l. intros. elim (le_Sn_O n H). intro r. elim r. intros a y l' H l''. simple induction n. trivial. intros. simpl in |- *. apply H. apply le_S_n. exact H1. Qed. Lemma alist_nth_ad_aapp_2 : forall (l l':alist A) (n:nat), S n <= length l' -> alist_nth_ad (length l + n) (aapp A l l') = alist_nth_ad n l'. Proof. simple induction l. trivial. intro r. elim r. intros a y l' H l'' n H0. simpl in |- *. apply H. exact H0. Qed. Lemma interval_split : forall p q n:nat, S n <= p + q -> {n' : nat | S n' <= q /\ n = p + n'} + {S n <= p}. Proof. simple induction p. simpl in |- *. intros. left. split with n. split; [ assumption | reflexivity ]. intros p' H q. simple induction n. intros. right. apply le_n_S. apply le_O_n. intros. elim (H _ _ (le_S_n _ _ H1)). intro H2. left. elim H2. intros n' H3. elim H3. intros H4 H5. split with n'. split; [ assumption | rewrite H5; reflexivity ]. intro H2. right. apply le_n_S. assumption. Qed. Lemma alist_conc_sorted : forall l l':alist A, alist_sorted_2 l -> alist_sorted_2 l' -> (forall n n':nat, S n <= length l -> S n' <= length l' -> ad_less (alist_nth_ad n l) (alist_nth_ad n' l') = true) -> alist_sorted_2 (aapp A l l'). Proof. unfold alist_sorted_2, lt in |- *. intros. rewrite (aapp_length l l') in H3. elim (interval_split (length l) (length l') m (le_trans _ _ _ (le_n_S _ _ (lt_le_weak m n H2)) H3)). intro H4. elim H4. intros m' H5. elim H5. intros. rewrite H7. rewrite (alist_nth_ad_aapp_2 l l' m' H6). elim (interval_split (length l) (length l') n H3). intro H8. elim H8. intros n' H9. elim H9. intros. rewrite H11. rewrite (alist_nth_ad_aapp_2 l l' n' H10). apply H0. rewrite H7 in H2. rewrite H11 in H2. change (S (length l) + m' <= length l + n') in H2. rewrite (plus_Snm_nSm (length l) m') in H2. exact ((fun p n m:nat => plus_le_reg_l n m p) (length l) (S m') n' H2). exact H10. intro H8. rewrite H7 in H2. cut (S (length l) <= length l). intros. elim (le_Sn_n _ H9). apply le_trans with (m := S n). apply le_n_S. apply le_trans with (m := S (length l + m')). apply le_trans with (m := length l + m'). apply le_plus_l. apply le_n_Sn. exact H2. exact H8. intro H4. rewrite (alist_nth_ad_aapp_1 l l' m H4). elim (interval_split (length l) (length l') n H3). intro H5. elim H5. intros n' H6. elim H6. intros. rewrite H8. rewrite (alist_nth_ad_aapp_2 l l' n' H7). exact (H1 m n' H4 H7). intro H5. rewrite (alist_nth_ad_aapp_1 l l' n H5). exact (H m n H2 H5). Qed. Lemma alist_nth_ad_semantics : forall (l:alist A) (n:nat), S n <= length l -> {y : A | alist_semantics A l (alist_nth_ad n l) = SOME A y}. Proof. simple induction l. intros. elim (le_Sn_O _ H). intro r. elim r. intros a y l0 H. simple induction n. simpl in |- *. intro. split with y. rewrite (ad_eq_correct a). reflexivity. intros. elim (H _ (le_S_n _ _ H1)). intros y0 H2. elim (sumbool_of_bool (ad_eq a (alist_nth_ad n0 l0))). intro H3. split with y. rewrite (ad_eq_complete _ _ H3). simpl in |- *. rewrite (ad_eq_correct (alist_nth_ad n0 l0)). reflexivity. intro H3. split with y0. simpl in |- *. rewrite H3. assumption. Qed. Lemma alist_of_Map_nth_ad : forall (m:Map A) (pf:ad -> ad) (l:alist A), l = MapFold1 A (alist A) (anil A) (aapp A) (fun (a0:ad) (y:A) => acons A (a0, y) (anil A)) pf m -> forall n:nat, S n <= length l -> {a' : ad | alist_nth_ad n l = pf a'}. Proof. intros. elim (alist_nth_ad_semantics l n H0). intros y H1. apply (alist_of_Map_semantics_1_1 A m pf (alist_nth_ad n l) y). rewrite <- H. assumption. Qed. Definition ad_monotonic (pf:ad -> ad) := forall a a':ad, ad_less a a' = true -> ad_less (pf a) (pf a') = true. Lemma ad_double_monotonic : ad_monotonic ad_double. Proof. unfold ad_monotonic in |- *. intros. rewrite ad_less_def_1. assumption. Qed. Lemma ad_double_plus_un_monotonic : ad_monotonic ad_double_plus_un. Proof. unfold ad_monotonic in |- *. intros. rewrite ad_less_def_2. assumption. Qed. Lemma ad_comp_monotonic : forall pf pf':ad -> ad, ad_monotonic pf -> ad_monotonic pf' -> ad_monotonic (fun a0:ad => pf (pf' a0)). Proof. unfold ad_monotonic in |- *. intros. apply H. apply H0. exact H1. Qed. Lemma ad_comp_double_monotonic : forall pf:ad -> ad, ad_monotonic pf -> ad_monotonic (fun a0:ad => pf (ad_double a0)). Proof. intros. apply ad_comp_monotonic. assumption. exact ad_double_monotonic. Qed. Lemma ad_comp_double_plus_un_monotonic : forall pf:ad -> ad, ad_monotonic pf -> ad_monotonic (fun a0:ad => pf (ad_double_plus_un a0)). Proof. intros. apply ad_comp_monotonic. assumption. exact ad_double_plus_un_monotonic. Qed. Lemma alist_of_Map_sorts_1 : forall (m:Map A) (pf:ad -> ad), ad_monotonic pf -> alist_sorted_2 (MapFold1 A (alist A) (anil A) (aapp A) (fun (a:ad) (y:A) => acons A (a, y) (anil A)) pf m). Proof. simple induction m. simpl in |- *. intros. apply alist_sorted_1_imp_2. apply alist_sorted_imp_1. reflexivity. intros. simpl in |- *. apply alist_sorted_1_imp_2. apply alist_sorted_imp_1. reflexivity. intros. simpl in |- *. apply alist_conc_sorted. exact (H (fun a0:ad => pf (ad_double a0)) (ad_comp_double_monotonic pf H1)). exact (H0 (fun a0:ad => pf (ad_double_plus_un a0)) (ad_comp_double_plus_un_monotonic pf H1)). intros. elim (alist_of_Map_nth_ad m0 (fun a0:ad => pf (ad_double a0)) (MapFold1 A (alist A) (anil A) (aapp A) (fun (a0:ad) (y:A) => acons A (a0, y) (anil A)) (fun a0:ad => pf (ad_double a0)) m0) (refl_equal _) n H2). intros a H4. rewrite H4. elim (alist_of_Map_nth_ad m1 (fun a0:ad => pf (ad_double_plus_un a0)) (MapFold1 A (alist A) (anil A) (aapp A) (fun (a0:ad) (y:A) => acons A (a0, y) (anil A)) (fun a0:ad => pf (ad_double_plus_un a0)) m1) ( refl_equal _) n' H3). intros a' H5. rewrite H5. unfold ad_monotonic in H1. apply H1. apply ad_less_def_3. Qed. Lemma alist_of_Map_sorts : forall m:Map A, alist_sorted (alist_of_Map A m) = true. Proof. intro. apply alist_sorted_2_imp. exact (alist_of_Map_sorts_1 m (fun a0:ad => a0) (fun (a a':ad) (p:ad_less a a' = true) => p)). Qed. Lemma alist_of_Map_sorts1 : forall m:Map A, alist_sorted_1 (alist_of_Map A m). Proof. intro. apply alist_sorted_imp_1. apply alist_of_Map_sorts. Qed. Lemma alist_of_Map_sorts2 : forall m:Map A, alist_sorted_2 (alist_of_Map A m). Proof. intro. apply alist_sorted_1_imp_2. apply alist_of_Map_sorts1. Qed. Lemma ad_less_total : forall a a':ad, {ad_less a a' = true} + {ad_less a' a = true} + {a = a'}. Proof. intro a. refine (ad_rec_double a (fun a:ad => forall a':ad, {ad_less a a' = true} + {ad_less a' a = true} + {a = a'}) _ _ _). intro. elim (sumbool_of_bool (ad_less ad_z a')). intro H. left. left. assumption. intro H. right. rewrite (ad_z_less_2 a' H). reflexivity. intros a0 H a'. refine (ad_rec_double a' (fun a':ad => {ad_less (ad_double a0) a' = true} + {ad_less a' (ad_double a0) = true} + {ad_double a0 = a'}) _ _ _). elim (sumbool_of_bool (ad_less ad_z (ad_double a0))). intro H0. left. right. assumption. intro H0. right. exact (ad_z_less_2 _ H0). intros a1 H0. rewrite ad_less_def_1. rewrite ad_less_def_1. elim (H a1). intro H1. left. assumption. intro H1. right. rewrite H1. reflexivity. intros a1 H0. left. left. apply ad_less_def_3. intros a0 H a'. refine (ad_rec_double a' (fun a':ad => {ad_less (ad_double_plus_un a0) a' = true} + {ad_less a' (ad_double_plus_un a0) = true} + {ad_double_plus_un a0 = a'}) _ _ _). left. right. case a0; reflexivity. intros a1 H0. left. right. apply ad_less_def_3. intros a1 H0. rewrite ad_less_def_2. rewrite ad_less_def_2. elim (H a1). intro H1. left. assumption. intro H1. right. rewrite H1. reflexivity. Qed. Lemma alist_too_low : forall (l:alist A) (a a':ad) (y:A), ad_less a a' = true -> alist_sorted_2 ((a', y) :: l) -> alist_semantics A ((a', y) :: l) a = NONE A. Proof. simple induction l. intros. simpl in |- *. elim (sumbool_of_bool (ad_eq a' a)). intro H1. rewrite (ad_eq_complete _ _ H1) in H. rewrite (ad_less_not_refl a) in H. discriminate H. intro H1. rewrite H1. reflexivity. intro r. elim r. intros a y l0 H a0 a1 y0 H0 H1. change (match ad_eq a1 a0 with | true => SOME A y0 | false => alist_semantics A ((a, y) :: l0) a0 end = NONE A) in |- *. elim (sumbool_of_bool (ad_eq a1 a0)). intro H2. rewrite (ad_eq_complete _ _ H2) in H0. rewrite (ad_less_not_refl a0) in H0. discriminate H0. intro H2. rewrite H2. apply H. apply ad_less_trans with (a' := a1). assumption. unfold alist_sorted_2 in H1. apply (H1 0 1). apply lt_n_Sn. simpl in |- *. apply le_n_S. apply le_n_S. apply le_O_n. apply alist_sorted_1_imp_2. apply alist_sorted_imp_1. cut (alist_sorted ((a1, y0) :: (a, y) :: l0) = true). intro H3. exact (proj2 (andb_prop _ _ H3)). apply alist_sorted_2_imp. assumption. Qed. Lemma alist_semantics_nth_ad : forall (l:alist A) (a:ad) (y:A), alist_semantics A l a = SOME A y -> {n : nat | S n <= length l /\ alist_nth_ad n l = a}. Proof. simple induction l. intros. discriminate H. intro r. elim r. intros a y l0 H a0 y0 H0. simpl in H0. elim (sumbool_of_bool (ad_eq a a0)). intro H1. rewrite H1 in H0. split with 0. split. simpl in |- *. apply le_n_S. apply le_O_n. simpl in |- *. exact (ad_eq_complete _ _ H1). intro H1. rewrite H1 in H0. elim (H a0 y0 H0). intros n' H2. split with (S n'). split. simpl in |- *. apply le_n_S. exact (proj1 H2). exact (proj2 H2). Qed. Lemma alist_semantics_tail : forall (l:alist A) (a:ad) (y:A), alist_sorted_2 ((a, y) :: l) -> eqm A (alist_semantics A l) (fun a0:ad => if ad_eq a a0 then NONE A else alist_semantics A ((a, y) :: l) a0). Proof. unfold eqm in |- *. intros. elim (sumbool_of_bool (ad_eq a a0)). intro H0. rewrite H0. rewrite <- (ad_eq_complete _ _ H0). unfold alist_sorted_2 in H. elim (option_sum A (alist_semantics A l a)). intro H1. elim H1. intros y0 H2. elim (alist_semantics_nth_ad l a y0 H2). intros n H3. elim H3. intros. cut (ad_less (alist_nth_ad 0 ((a, y) :: l)) (alist_nth_ad (S n) ((a, y) :: l)) = true). intro. simpl in H6. rewrite H5 in H6. rewrite (ad_less_not_refl a) in H6. discriminate H6. apply H. apply lt_O_Sn. simpl in |- *. apply le_n_S. assumption. trivial. intro H0. simpl in |- *. rewrite H0. reflexivity. Qed. Lemma alist_semantics_same_tail : forall (l l':alist A) (a:ad) (y:A), alist_sorted_2 ((a, y) :: l) -> alist_sorted_2 ((a, y) :: l') -> eqm A (alist_semantics A ((a, y) :: l)) (alist_semantics A ((a, y) :: l')) -> eqm A (alist_semantics A l) (alist_semantics A l'). Proof. unfold eqm in |- *. intros. rewrite (alist_semantics_tail _ _ _ H a0). rewrite (alist_semantics_tail _ _ _ H0 a0). case (ad_eq a a0). reflexivity. exact (H1 a0). Qed. Lemma alist_sorted_tail : forall (l:alist A) (a:ad) (y:A), alist_sorted_2 ((a, y) :: l) -> alist_sorted_2 l. Proof. unfold alist_sorted_2 in |- *. intros. apply (H (S m) (S n)). apply lt_n_S. assumption. simpl in |- *. apply le_n_S. assumption. Qed. Lemma alist_canonical : forall l l':alist A, eqm A (alist_semantics A l) (alist_semantics A l') -> alist_sorted_2 l -> alist_sorted_2 l' -> l = l'. Proof. unfold eqm in |- *. simple induction l. simple induction l'. trivial. intro r. elim r. intros a y l0 H H0 H1 H2. simpl in H0. cut (NONE A = match ad_eq a a with | true => SOME A y | false => alist_semantics A l0 a end). rewrite (ad_eq_correct a). intro. discriminate H3. exact (H0 a). intro r. elim r. intros a y l0 H. simple induction l'. intros. simpl in H0. cut (match ad_eq a a with | true => SOME A y | false => alist_semantics A l0 a end = NONE A). rewrite (ad_eq_correct a). intro. discriminate H3. exact (H0 a). intro r'. elim r'. intros a' y' l'0 H0 H1 H2 H3. elim (ad_less_total a a'). intro H4. elim H4. intro H5. cut (alist_semantics A ((a, y) :: l0) a = alist_semantics A ((a', y') :: l'0) a). intro. rewrite (alist_too_low l'0 a a' y' H5 H3) in H6. simpl in H6. rewrite (ad_eq_correct a) in H6. discriminate H6. exact (H1 a). intro H5. cut (alist_semantics A ((a, y) :: l0) a' = alist_semantics A ((a', y') :: l'0) a'). intro. rewrite (alist_too_low l0 a' a y H5 H2) in H6. simpl in H6. rewrite (ad_eq_correct a') in H6. discriminate H6. exact (H1 a'). intro H4. rewrite H4. cut (alist_semantics A ((a, y) :: l0) a = alist_semantics A ((a', y') :: l'0) a). intro. simpl in H5. rewrite H4 in H5. rewrite (ad_eq_correct a') in H5. inversion H5. rewrite H4 in H1. rewrite H7 in H1. cut (l0 = l'0). intro. rewrite H6. reflexivity. apply H. rewrite H4 in H2. rewrite H7 in H2. exact (alist_semantics_same_tail l0 l'0 a' y' H2 H3 H1). exact (alist_sorted_tail _ _ _ H2). exact (alist_sorted_tail _ _ _ H3). exact (H1 a). Qed. End LSort.