(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* Map A := match m with | M0 => fun _:Map B => M0 A | M1 a y => fun m':Map B => match MapGet B m' a with | NONE => M0 A | _ => m end | M2 m1 m2 => fun m':Map B => match m' with | M0 => M0 A | M1 a' y' => match MapGet A m a' with | NONE => M0 A | SOME y => M1 A a' y end | M2 m'1 m'2 => makeM2 A (MapDomRestrTo m1 m'1) (MapDomRestrTo m2 m'2) end end. Lemma MapDomRestrTo_semantics : forall (m:Map A) (m':Map B), eqm A (MapGet A (MapDomRestrTo m m')) (fun a0:ad => match MapGet B m' a0 with | NONE => NONE A | _ => MapGet A m a0 end). Proof. unfold eqm in |- *. simple induction m. simpl in |- *. intros. case (MapGet B m' a); trivial. intros. simpl in |- *. elim (sumbool_of_bool (ad_eq a a1)). intro H. rewrite H. rewrite <- (ad_eq_complete _ _ H). case (MapGet B m' a). reflexivity. intro. apply M1_semantics_1. intro H. rewrite H. case (MapGet B m' a). case (MapGet B m' a1); reflexivity. case (MapGet B m' a1); intros; exact (M1_semantics_2 A a a1 a0 H). simple induction m'. trivial. unfold MapDomRestrTo in |- *. intros. elim (sumbool_of_bool (ad_eq a a1)). intro H1. rewrite (ad_eq_complete _ _ H1). rewrite (M1_semantics_1 B a1 a0). case (MapGet A (M2 A m0 m1) a1). reflexivity. intro. apply M1_semantics_1. intro H1. rewrite (M1_semantics_2 B a a1 a0 H1). case (MapGet A (M2 A m0 m1) a). reflexivity. intro. exact (M1_semantics_2 A a a1 a2 H1). intros. change (MapGet A (makeM2 A (MapDomRestrTo m0 m2) (MapDomRestrTo m1 m3)) a = match MapGet B (M2 B m2 m3) a with | NONE => NONE A | SOME _ => MapGet A (M2 A m0 m1) a end) in |- *. rewrite (makeM2_M2 A (MapDomRestrTo m0 m2) (MapDomRestrTo m1 m3) a). rewrite MapGet_M2_bit_0_if. rewrite (H0 m3 (ad_div_2 a)). rewrite (H m2 (ad_div_2 a)). rewrite (MapGet_M2_bit_0_if B m2 m3 a). rewrite (MapGet_M2_bit_0_if A m0 m1 a). case (ad_bit_0 a); reflexivity. Qed. Fixpoint MapDomRestrBy (m:Map A) : Map B -> Map A := match m with | M0 => fun _:Map B => M0 A | M1 a y => fun m':Map B => match MapGet B m' a with | NONE => m | _ => M0 A end | M2 m1 m2 => fun m':Map B => match m' with | M0 => m | M1 a' y' => MapRemove A m a' | M2 m'1 m'2 => makeM2 A (MapDomRestrBy m1 m'1) (MapDomRestrBy m2 m'2) end end. Lemma MapDomRestrBy_semantics : forall (m:Map A) (m':Map B), eqm A (MapGet A (MapDomRestrBy m m')) (fun a0:ad => match MapGet B m' a0 with | NONE => MapGet A m a0 | _ => NONE A end). Proof. unfold eqm in |- *. simple induction m. simpl in |- *. intros. case (MapGet B m' a); trivial. intros. simpl in |- *. elim (sumbool_of_bool (ad_eq a a1)). intro H. rewrite H. rewrite (ad_eq_complete _ _ H). case (MapGet B m' a1). apply M1_semantics_1. trivial. intro H. rewrite H. case (MapGet B m' a). rewrite (M1_semantics_2 A a a1 a0 H). case (MapGet B m' a1); trivial. case (MapGet B m' a1); trivial. simple induction m'. trivial. unfold MapDomRestrBy in |- *. intros. rewrite (MapRemove_semantics A (M2 A m0 m1) a a1). elim (sumbool_of_bool (ad_eq a a1)). intro H1. rewrite H1. rewrite (ad_eq_complete _ _ H1). rewrite (M1_semantics_1 B a1 a0). reflexivity. intro H1. rewrite H1. rewrite (M1_semantics_2 B a a1 a0 H1). reflexivity. intros. change (MapGet A (makeM2 A (MapDomRestrBy m0 m2) (MapDomRestrBy m1 m3)) a = match MapGet B (M2 B m2 m3) a with | NONE => MapGet A (M2 A m0 m1) a | SOME _ => NONE A end) in |- *. rewrite (makeM2_M2 A (MapDomRestrBy m0 m2) (MapDomRestrBy m1 m3) a). rewrite MapGet_M2_bit_0_if. rewrite (H0 m3 (ad_div_2 a)). rewrite (H m2 (ad_div_2 a)). rewrite (MapGet_M2_bit_0_if B m2 m3 a). rewrite (MapGet_M2_bit_0_if A m0 m1 a). case (ad_bit_0 a); reflexivity. Qed. Definition in_dom (a:ad) (m:Map A) := match MapGet A m a with | NONE => false | _ => true end. Lemma in_dom_M0 : forall a:ad, in_dom a (M0 A) = false. Proof. trivial. Qed. Lemma in_dom_M1 : forall (a a0:ad) (y:A), in_dom a0 (M1 A a y) = ad_eq a a0. Proof. unfold in_dom in |- *. intros. simpl in |- *. case (ad_eq a a0); reflexivity. Qed. Lemma in_dom_M1_1 : forall (a:ad) (y:A), in_dom a (M1 A a y) = true. Proof. intros. rewrite in_dom_M1. apply ad_eq_correct. Qed. Lemma in_dom_M1_2 : forall (a a0:ad) (y:A), in_dom a0 (M1 A a y) = true -> a = a0. Proof. intros. apply (ad_eq_complete a a0). rewrite (in_dom_M1 a a0 y) in H. assumption. Qed. Lemma in_dom_some : forall (m:Map A) (a:ad), in_dom a m = true -> {y : A | MapGet A m a = SOME A y}. Proof. unfold in_dom in |- *. intros. elim (option_sum _ (MapGet A m a)). trivial. intro H0. rewrite H0 in H. discriminate H. Qed. Lemma in_dom_none : forall (m:Map A) (a:ad), in_dom a m = false -> MapGet A m a = NONE A. Proof. unfold in_dom in |- *. intros. elim (option_sum _ (MapGet A m a)). intro H0. elim H0. intros y H1. rewrite H1 in H. discriminate H. trivial. Qed. Lemma in_dom_put : forall (m:Map A) (a0:ad) (y0:A) (a:ad), in_dom a (MapPut A m a0 y0) = orb (ad_eq a a0) (in_dom a m). Proof. unfold in_dom in |- *. intros. rewrite (MapPut_semantics A m a0 y0 a). elim (sumbool_of_bool (ad_eq a a0)). intro H. rewrite H. rewrite (ad_eq_comm a a0) in H. rewrite H. rewrite orb_true_b. reflexivity. intro H. rewrite H. rewrite (ad_eq_comm a a0) in H. rewrite H. rewrite orb_false_b. reflexivity. Qed. Lemma in_dom_put_behind : forall (m:Map A) (a0:ad) (y0:A) (a:ad), in_dom a (MapPut_behind A m a0 y0) = orb (ad_eq a a0) (in_dom a m). Proof. unfold in_dom in |- *. intros. rewrite (MapPut_behind_semantics A m a0 y0 a). elim (sumbool_of_bool (ad_eq a a0)). intro H. rewrite H. rewrite (ad_eq_comm a a0) in H. rewrite H. case (MapGet A m a); reflexivity. intro H. rewrite H. rewrite (ad_eq_comm a a0) in H. rewrite H. case (MapGet A m a); trivial. Qed. Lemma in_dom_remove : forall (m:Map A) (a0 a:ad), in_dom a (MapRemove A m a0) = andb (negb (ad_eq a a0)) (in_dom a m). Proof. unfold in_dom in |- *. intros. rewrite (MapRemove_semantics A m a0 a). elim (sumbool_of_bool (ad_eq a a0)). intro H. rewrite H. rewrite (ad_eq_comm a a0) in H. rewrite H. reflexivity. intro H. rewrite H. rewrite (ad_eq_comm a a0) in H. rewrite H. case (MapGet A m a); reflexivity. Qed. Lemma in_dom_merge : forall (m m':Map A) (a:ad), in_dom a (MapMerge A m m') = orb (in_dom a m) (in_dom a m'). Proof. unfold in_dom in |- *. intros. rewrite (MapMerge_semantics A m m' a). elim (option_sum A (MapGet A m' a)). intro H. elim H. intros y H0. rewrite H0. case (MapGet A m a); reflexivity. intro H. rewrite H. rewrite orb_b_false. reflexivity. Qed. Lemma in_dom_delta : forall (m m':Map A) (a:ad), in_dom a (MapDelta A m m') = xorb (in_dom a m) (in_dom a m'). Proof. unfold in_dom in |- *. intros. rewrite (MapDelta_semantics A m m' a). elim (option_sum A (MapGet A m' a)). intro H. elim H. intros y H0. rewrite H0. case (MapGet A m a); reflexivity. intro H. rewrite H. case (MapGet A m a); reflexivity. Qed. End Dom. Section InDom. Variables A B : Set. Lemma in_dom_restrto : forall (m:Map A) (m':Map B) (a:ad), in_dom A a (MapDomRestrTo A B m m') = andb (in_dom A a m) (in_dom B a m'). Proof. unfold in_dom in |- *. intros. rewrite (MapDomRestrTo_semantics A B m m' a). elim (option_sum B (MapGet B m' a)). intro H. elim H. intros y H0. rewrite H0. rewrite andb_b_true. reflexivity. intro H. rewrite H. rewrite andb_b_false. reflexivity. Qed. Lemma in_dom_restrby : forall (m:Map A) (m':Map B) (a:ad), in_dom A a (MapDomRestrBy A B m m') = andb (in_dom A a m) (negb (in_dom B a m')). Proof. unfold in_dom in |- *. intros. rewrite (MapDomRestrBy_semantics A B m m' a). elim (option_sum B (MapGet B m' a)). intro H. elim H. intros y H0. rewrite H0. unfold negb in |- *. rewrite andb_b_false. reflexivity. intro H. rewrite H. unfold negb in |- *. rewrite andb_b_true. reflexivity. Qed. End InDom. Definition FSet := Map unit. Section FSetDefs. Variable A : Set. Definition in_FSet : ad -> FSet -> bool := in_dom unit. Fixpoint MapDom (m:Map A) : FSet := match m with | M0 => M0 unit | M1 a _ => M1 unit a tt | M2 m m' => M2 unit (MapDom m) (MapDom m') end. Lemma MapDom_semantics_1 : forall (m:Map A) (a:ad) (y:A), MapGet A m a = SOME A y -> in_FSet a (MapDom m) = true. Proof. simple induction m. intros. discriminate H. unfold MapDom in |- *. unfold in_FSet in |- *. unfold in_dom in |- *. unfold MapGet in |- *. intros a y a0 y0. case (ad_eq a a0). trivial. intro. discriminate H. intros m0 H m1 H0 a y. rewrite (MapGet_M2_bit_0_if A m0 m1 a). simpl in |- *. unfold in_FSet in |- *. unfold in_dom in |- *. rewrite (MapGet_M2_bit_0_if unit (MapDom m0) (MapDom m1) a). case (ad_bit_0 a). unfold in_FSet, in_dom in H0. intro. apply H0 with (y := y). assumption. unfold in_FSet, in_dom in H. intro. apply H with (y := y). assumption. Qed. Lemma MapDom_semantics_2 : forall (m:Map A) (a:ad), in_FSet a (MapDom m) = true -> {y : A | MapGet A m a = SOME A y}. Proof. simple induction m. intros. discriminate H. unfold MapDom in |- *. unfold in_FSet in |- *. unfold in_dom in |- *. unfold MapGet in |- *. intros a y a0. case (ad_eq a a0). intro. split with y. reflexivity. intro. discriminate H. intros m0 H m1 H0 a. rewrite (MapGet_M2_bit_0_if A m0 m1 a). simpl in |- *. unfold in_FSet in |- *. unfold in_dom in |- *. rewrite (MapGet_M2_bit_0_if unit (MapDom m0) (MapDom m1) a). case (ad_bit_0 a). unfold in_FSet, in_dom in H0. intro. apply H0. assumption. unfold in_FSet, in_dom in H. intro. apply H. assumption. Qed. Lemma MapDom_semantics_3 : forall (m:Map A) (a:ad), MapGet A m a = NONE A -> in_FSet a (MapDom m) = false. Proof. intros. elim (sumbool_of_bool (in_FSet a (MapDom m))). intro H0. elim (MapDom_semantics_2 m a H0). intros y H1. rewrite H in H1. discriminate H1. trivial. Qed. Lemma MapDom_semantics_4 : forall (m:Map A) (a:ad), in_FSet a (MapDom m) = false -> MapGet A m a = NONE A. Proof. intros. elim (option_sum A (MapGet A m a)). intro H0. elim H0. intros y H1. rewrite (MapDom_semantics_1 m a y H1) in H. discriminate H. trivial. Qed. Lemma MapDom_Dom : forall (m:Map A) (a:ad), in_dom A a m = in_FSet a (MapDom m). Proof. intros. elim (sumbool_of_bool (in_FSet a (MapDom m))). intro H. elim (MapDom_semantics_2 m a H). intros y H0. rewrite H. unfold in_dom in |- *. rewrite H0. reflexivity. intro H. rewrite H. unfold in_dom in |- *. rewrite (MapDom_semantics_4 m a H). reflexivity. Qed. Definition FSetUnion (s s':FSet) : FSet := MapMerge unit s s'. Lemma in_FSet_union : forall (s s':FSet) (a:ad), in_FSet a (FSetUnion s s') = orb (in_FSet a s) (in_FSet a s'). Proof. exact (in_dom_merge unit). Qed. Definition FSetInter (s s':FSet) : FSet := MapDomRestrTo unit unit s s'. Lemma in_FSet_inter : forall (s s':FSet) (a:ad), in_FSet a (FSetInter s s') = andb (in_FSet a s) (in_FSet a s'). Proof. exact (in_dom_restrto unit unit). Qed. Definition FSetDiff (s s':FSet) : FSet := MapDomRestrBy unit unit s s'. Lemma in_FSet_diff : forall (s s':FSet) (a:ad), in_FSet a (FSetDiff s s') = andb (in_FSet a s) (negb (in_FSet a s')). Proof. exact (in_dom_restrby unit unit). Qed. Definition FSetDelta (s s':FSet) : FSet := MapDelta unit s s'. Lemma in_FSet_delta : forall (s s':FSet) (a:ad), in_FSet a (FSetDelta s s') = xorb (in_FSet a s) (in_FSet a s'). Proof. exact (in_dom_delta unit). Qed. End FSetDefs. Lemma FSet_Dom : forall s:FSet, MapDom unit s = s. Proof. simple induction s. trivial. simpl in |- *. intros a t. elim t. reflexivity. intros. simpl in |- *. rewrite H. rewrite H0. reflexivity. Qed.