(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* ad. Lemma ad_sum : forall a:ad, {p : positive | a = ad_x p} + {a = ad_z}. Proof. destruct a; auto. left; exists p; trivial. Qed. Fixpoint p_xor (p p2:positive) {struct p} : ad := match p with | xH => match p2 with | xH => ad_z | xO p'2 => ad_x (xI p'2) | xI p'2 => ad_x (xO p'2) end | xO p' => match p2 with | xH => ad_x (xI p') | xO p'2 => match p_xor p' p'2 with | ad_z => ad_z | ad_x p'' => ad_x (xO p'') end | xI p'2 => match p_xor p' p'2 with | ad_z => ad_x 1 | ad_x p'' => ad_x (xI p'') end end | xI p' => match p2 with | xH => ad_x (xO p') | xO p'2 => match p_xor p' p'2 with | ad_z => ad_x 1 | ad_x p'' => ad_x (xI p'') end | xI p'2 => match p_xor p' p'2 with | ad_z => ad_z | ad_x p'' => ad_x (xO p'') end end end. Definition ad_xor (a a':ad) := match a with | ad_z => a' | ad_x p => match a' with | ad_z => a | ad_x p' => p_xor p p' end end. Lemma ad_xor_neutral_left : forall a:ad, ad_xor ad_z a = a. Proof. trivial. Qed. Lemma ad_xor_neutral_right : forall a:ad, ad_xor a ad_z = a. Proof. destruct a; trivial. Qed. Lemma ad_xor_comm : forall a a':ad, ad_xor a a' = ad_xor a' a. Proof. destruct a; destruct a'; simpl in |- *; auto. generalize p0; clear p0; induction p as [p Hrecp| p Hrecp| ]; simpl in |- *; auto. destruct p0; simpl in |- *; trivial; intros. rewrite Hrecp; trivial. rewrite Hrecp; trivial. destruct p0; simpl in |- *; trivial; intros. rewrite Hrecp; trivial. rewrite Hrecp; trivial. destruct p0 as [p| p| ]; simpl in |- *; auto. Qed. Lemma ad_xor_nilpotent : forall a:ad, ad_xor a a = ad_z. Proof. destruct a; trivial. simpl in |- *. induction p as [p IHp| p IHp| ]; trivial. simpl in |- *. rewrite IHp; reflexivity. simpl in |- *. rewrite IHp; reflexivity. Qed. Fixpoint ad_bit_1 (p:positive) : nat -> bool := match p with | xH => fun n:nat => match n with | O => true | S _ => false end | xO p => fun n:nat => match n with | O => false | S n' => ad_bit_1 p n' end | xI p => fun n:nat => match n with | O => true | S n' => ad_bit_1 p n' end end. Definition ad_bit (a:ad) := match a with | ad_z => fun _:nat => false | ad_x p => ad_bit_1 p end. Definition eqf (f g:nat -> bool) := forall n:nat, f n = g n. Lemma ad_faithful_1 : forall a:ad, eqf (ad_bit ad_z) (ad_bit a) -> ad_z = a. Proof. destruct a. trivial. induction p as [p IHp| p IHp| ]; intro H. absurd (ad_z = ad_x p). discriminate. exact (IHp (fun n:nat => H (S n))). absurd (ad_z = ad_x p). discriminate. exact (IHp (fun n:nat => H (S n))). absurd (false = true). discriminate. exact (H 0). Qed. Lemma ad_faithful_2 : forall a:ad, eqf (ad_bit (ad_x 1)) (ad_bit a) -> ad_x 1 = a. Proof. destruct a. intros. absurd (true = false). discriminate. exact (H 0). destruct p. intro H. absurd (ad_z = ad_x p). discriminate. exact (ad_faithful_1 (ad_x p) (fun n:nat => H (S n))). intros. absurd (true = false). discriminate. exact (H 0). trivial. Qed. Lemma ad_faithful_3 : forall (a:ad) (p:positive), (forall p':positive, eqf (ad_bit (ad_x p)) (ad_bit (ad_x p')) -> p = p') -> eqf (ad_bit (ad_x (xO p))) (ad_bit a) -> ad_x (xO p) = a. Proof. destruct a. intros. cut (eqf (ad_bit ad_z) (ad_bit (ad_x (xO p)))). intro. rewrite (ad_faithful_1 (ad_x (xO p)) H1). reflexivity. unfold eqf in |- *. intro. unfold eqf in H0. rewrite H0. reflexivity. case p. intros. absurd (false = true). discriminate. exact (H0 0). intros. rewrite (H p0 (fun n:nat => H0 (S n))). reflexivity. intros. absurd (false = true). discriminate. exact (H0 0). Qed. Lemma ad_faithful_4 : forall (a:ad) (p:positive), (forall p':positive, eqf (ad_bit (ad_x p)) (ad_bit (ad_x p')) -> p = p') -> eqf (ad_bit (ad_x (xI p))) (ad_bit a) -> ad_x (xI p) = a. Proof. destruct a. intros. cut (eqf (ad_bit ad_z) (ad_bit (ad_x (xI p)))). intro. rewrite (ad_faithful_1 (ad_x (xI p)) H1). reflexivity. unfold eqf in |- *. intro. unfold eqf in H0. rewrite H0. reflexivity. case p. intros. rewrite (H p0 (fun n:nat => H0 (S n))). reflexivity. intros. absurd (true = false). discriminate. exact (H0 0). intros. absurd (ad_z = ad_x p0). discriminate. cut (eqf (ad_bit (ad_x 1)) (ad_bit (ad_x (xI p0)))). intro. exact (ad_faithful_1 (ad_x p0) (fun n:nat => H1 (S n))). unfold eqf in |- *. unfold eqf in H0. intro. rewrite H0. reflexivity. Qed. Lemma ad_faithful : forall a a':ad, eqf (ad_bit a) (ad_bit a') -> a = a'. Proof. destruct a. exact ad_faithful_1. induction p. intros a' H. apply ad_faithful_4. intros. cut (ad_x p = ad_x p'). intro. inversion H1. reflexivity. exact (IHp (ad_x p') H0). assumption. intros. apply ad_faithful_3. intros. cut (ad_x p = ad_x p'). intro. inversion H1. reflexivity. exact (IHp (ad_x p') H0). assumption. exact ad_faithful_2. Qed. Definition adf_xor (f g:nat -> bool) (n:nat) := xorb (f n) (g n). Lemma ad_xor_sem_1 : forall a':ad, ad_bit (ad_xor ad_z a') 0 = ad_bit a' 0. Proof. trivial. Qed. Lemma ad_xor_sem_2 : forall a':ad, ad_bit (ad_xor (ad_x 1) a') 0 = negb (ad_bit a' 0). Proof. intro. case a'. trivial. simpl in |- *. intro. case p; trivial. Qed. Lemma ad_xor_sem_3 : forall (p:positive) (a':ad), ad_bit (ad_xor (ad_x (xO p)) a') 0 = ad_bit a' 0. Proof. intros. case a'. trivial. simpl in |- *. intro. case p0; trivial. intro. case (p_xor p p1); trivial. intro. case (p_xor p p1); trivial. Qed. Lemma ad_xor_sem_4 : forall (p:positive) (a':ad), ad_bit (ad_xor (ad_x (xI p)) a') 0 = negb (ad_bit a' 0). Proof. intros. case a'. trivial. simpl in |- *. intro. case p0; trivial. intro. case (p_xor p p1); trivial. intro. case (p_xor p p1); trivial. Qed. Lemma ad_xor_sem_5 : forall a a':ad, ad_bit (ad_xor a a') 0 = adf_xor (ad_bit a) (ad_bit a') 0. Proof. destruct a. intro. change (ad_bit a' 0 = xorb false (ad_bit a' 0)) in |- *. rewrite false_xorb. trivial. case p. exact ad_xor_sem_4. intros. change (ad_bit (ad_xor (ad_x (xO p0)) a') 0 = xorb false (ad_bit a' 0)) in |- *. rewrite false_xorb. apply ad_xor_sem_3. exact ad_xor_sem_2. Qed. Lemma ad_xor_sem_6 : forall n:nat, (forall a a':ad, ad_bit (ad_xor a a') n = adf_xor (ad_bit a) (ad_bit a') n) -> forall a a':ad, ad_bit (ad_xor a a') (S n) = adf_xor (ad_bit a) (ad_bit a') (S n). Proof. intros. case a. unfold adf_xor in |- *. unfold ad_bit at 2 in |- *. rewrite false_xorb. reflexivity. case a'. unfold adf_xor in |- *. unfold ad_bit at 3 in |- *. intro. rewrite xorb_false. reflexivity. intros. case p0. case p. intros. change (ad_bit (ad_xor (ad_x (xI p2)) (ad_x (xI p1))) (S n) = adf_xor (ad_bit (ad_x p2)) (ad_bit (ad_x p1)) n) in |- *. rewrite <- H. simpl in |- *. case (p_xor p2 p1); trivial. intros. change (ad_bit (ad_xor (ad_x (xI p2)) (ad_x (xO p1))) (S n) = adf_xor (ad_bit (ad_x p2)) (ad_bit (ad_x p1)) n) in |- *. rewrite <- H. simpl in |- *. case (p_xor p2 p1); trivial. intro. unfold adf_xor in |- *. unfold ad_bit at 3 in |- *. unfold ad_bit_1 in |- *. rewrite xorb_false. reflexivity. case p. intros. change (ad_bit (ad_xor (ad_x (xO p2)) (ad_x (xI p1))) (S n) = adf_xor (ad_bit (ad_x p2)) (ad_bit (ad_x p1)) n) in |- *. rewrite <- H. simpl in |- *. case (p_xor p2 p1); trivial. intros. change (ad_bit (ad_xor (ad_x (xO p2)) (ad_x (xO p1))) (S n) = adf_xor (ad_bit (ad_x p2)) (ad_bit (ad_x p1)) n) in |- *. rewrite <- H. simpl in |- *. case (p_xor p2 p1); trivial. intro. unfold adf_xor in |- *. unfold ad_bit at 3 in |- *. unfold ad_bit_1 in |- *. rewrite xorb_false. reflexivity. unfold adf_xor in |- *. unfold ad_bit at 2 in |- *. unfold ad_bit_1 in |- *. rewrite false_xorb. simpl in |- *. case p; trivial. Qed. Lemma ad_xor_semantics : forall a a':ad, eqf (ad_bit (ad_xor a a')) (adf_xor (ad_bit a) (ad_bit a')). Proof. unfold eqf in |- *. intros. generalize a a'. elim n. exact ad_xor_sem_5. exact ad_xor_sem_6. Qed. Lemma eqf_sym : forall f f':nat -> bool, eqf f f' -> eqf f' f. Proof. unfold eqf in |- *. intros. rewrite H. reflexivity. Qed. Lemma eqf_refl : forall f:nat -> bool, eqf f f. Proof. unfold eqf in |- *. trivial. Qed. Lemma eqf_trans : forall f f' f'':nat -> bool, eqf f f' -> eqf f' f'' -> eqf f f''. Proof. unfold eqf in |- *. intros. rewrite H. exact (H0 n). Qed. Lemma adf_xor_eq : forall f f':nat -> bool, eqf (adf_xor f f') (fun n:nat => false) -> eqf f f'. Proof. unfold eqf in |- *. unfold adf_xor in |- *. intros. apply xorb_eq. apply H. Qed. Lemma ad_xor_eq : forall a a':ad, ad_xor a a' = ad_z -> a = a'. Proof. intros. apply ad_faithful. apply adf_xor_eq. apply eqf_trans with (f' := ad_bit (ad_xor a a')). apply eqf_sym. apply ad_xor_semantics. rewrite H. unfold eqf in |- *. trivial. Qed. Lemma adf_xor_assoc : forall f f' f'':nat -> bool, eqf (adf_xor (adf_xor f f') f'') (adf_xor f (adf_xor f' f'')). Proof. unfold eqf in |- *. unfold adf_xor in |- *. intros. apply xorb_assoc. Qed. Lemma eqf_xor_1 : forall f f' f'' f''':nat -> bool, eqf f f' -> eqf f'' f''' -> eqf (adf_xor f f'') (adf_xor f' f'''). Proof. unfold eqf in |- *. intros. unfold adf_xor in |- *. rewrite H. rewrite H0. reflexivity. Qed. Lemma ad_xor_assoc : forall a a' a'':ad, ad_xor (ad_xor a a') a'' = ad_xor a (ad_xor a' a''). Proof. intros. apply ad_faithful. apply eqf_trans with (f' := adf_xor (adf_xor (ad_bit a) (ad_bit a')) (ad_bit a'')). apply eqf_trans with (f' := adf_xor (ad_bit (ad_xor a a')) (ad_bit a'')). apply ad_xor_semantics. apply eqf_xor_1. apply ad_xor_semantics. apply eqf_refl. apply eqf_trans with (f' := adf_xor (ad_bit a) (adf_xor (ad_bit a') (ad_bit a''))). apply adf_xor_assoc. apply eqf_trans with (f' := adf_xor (ad_bit a) (ad_bit (ad_xor a' a''))). apply eqf_xor_1. apply eqf_refl. apply eqf_sym. apply ad_xor_semantics. apply eqf_sym. apply ad_xor_semantics. Qed. Definition ad_double (a:ad) := match a with | ad_z => ad_z | ad_x p => ad_x (xO p) end. Definition ad_double_plus_un (a:ad) := match a with | ad_z => ad_x 1 | ad_x p => ad_x (xI p) end. Definition ad_div_2 (a:ad) := match a with | ad_z => ad_z | ad_x xH => ad_z | ad_x (xO p) => ad_x p | ad_x (xI p) => ad_x p end. Lemma ad_double_div_2 : forall a:ad, ad_div_2 (ad_double a) = a. Proof. destruct a; trivial. Qed. Lemma ad_double_plus_un_div_2 : forall a:ad, ad_div_2 (ad_double_plus_un a) = a. Proof. destruct a; trivial. Qed. Lemma ad_double_inj : forall a0 a1:ad, ad_double a0 = ad_double a1 -> a0 = a1. Proof. intros. rewrite <- (ad_double_div_2 a0). rewrite H. apply ad_double_div_2. Qed. Lemma ad_double_plus_un_inj : forall a0 a1:ad, ad_double_plus_un a0 = ad_double_plus_un a1 -> a0 = a1. Proof. intros. rewrite <- (ad_double_plus_un_div_2 a0). rewrite H. apply ad_double_plus_un_div_2. Qed. Definition ad_bit_0 (a:ad) := match a with | ad_z => false | ad_x (xO _) => false | _ => true end. Lemma ad_double_bit_0 : forall a:ad, ad_bit_0 (ad_double a) = false. Proof. destruct a; trivial. Qed. Lemma ad_double_plus_un_bit_0 : forall a:ad, ad_bit_0 (ad_double_plus_un a) = true. Proof. destruct a; trivial. Qed. Lemma ad_div_2_double : forall a:ad, ad_bit_0 a = false -> ad_double (ad_div_2 a) = a. Proof. destruct a. trivial. destruct p. intro H. discriminate H. intros. reflexivity. intro H. discriminate H. Qed. Lemma ad_div_2_double_plus_un : forall a:ad, ad_bit_0 a = true -> ad_double_plus_un (ad_div_2 a) = a. Proof. destruct a. intro. discriminate H. destruct p. intros. reflexivity. intro H. discriminate H. intro. reflexivity. Qed. Lemma ad_bit_0_correct : forall a:ad, ad_bit a 0 = ad_bit_0 a. Proof. destruct a; trivial. destruct p; trivial. Qed. Lemma ad_div_2_correct : forall (a:ad) (n:nat), ad_bit (ad_div_2 a) n = ad_bit a (S n). Proof. destruct a; trivial. destruct p; trivial. Qed. Lemma ad_xor_bit_0 : forall a a':ad, ad_bit_0 (ad_xor a a') = xorb (ad_bit_0 a) (ad_bit_0 a'). Proof. intros. rewrite <- ad_bit_0_correct. rewrite (ad_xor_semantics a a' 0). unfold adf_xor in |- *. rewrite ad_bit_0_correct. rewrite ad_bit_0_correct. reflexivity. Qed. Lemma ad_xor_div_2 : forall a a':ad, ad_div_2 (ad_xor a a') = ad_xor (ad_div_2 a) (ad_div_2 a'). Proof. intros. apply ad_faithful. unfold eqf in |- *. intro. rewrite (ad_xor_semantics (ad_div_2 a) (ad_div_2 a') n). rewrite ad_div_2_correct. rewrite (ad_xor_semantics a a' (S n)). unfold adf_xor in |- *. rewrite ad_div_2_correct. rewrite ad_div_2_correct. reflexivity. Qed. Lemma ad_neg_bit_0 : forall a a':ad, ad_bit_0 (ad_xor a a') = true -> ad_bit_0 a = negb (ad_bit_0 a'). Proof. intros. rewrite <- true_xorb. rewrite <- H. rewrite ad_xor_bit_0. rewrite xorb_assoc. rewrite xorb_nilpotent. rewrite xorb_false. reflexivity. Qed. Lemma ad_neg_bit_0_1 : forall a a':ad, ad_xor a a' = ad_x 1 -> ad_bit_0 a = negb (ad_bit_0 a'). Proof. intros. apply ad_neg_bit_0. rewrite H. reflexivity. Qed. Lemma ad_neg_bit_0_2 : forall (a a':ad) (p:positive), ad_xor a a' = ad_x (xI p) -> ad_bit_0 a = negb (ad_bit_0 a'). Proof. intros. apply ad_neg_bit_0. rewrite H. reflexivity. Qed. Lemma ad_same_bit_0 : forall (a a':ad) (p:positive), ad_xor a a' = ad_x (xO p) -> ad_bit_0 a = ad_bit_0 a'. Proof. intros. rewrite <- (xorb_false (ad_bit_0 a)). cut (ad_bit_0 (ad_x (xO p)) = false). intro. rewrite <- H0. rewrite <- H. rewrite ad_xor_bit_0. rewrite <- xorb_assoc. rewrite xorb_nilpotent. rewrite false_xorb. reflexivity. reflexivity. Qed.