(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* true | xO p'1, xO p'2 => ad_eq_1 p'1 p'2 | xI p'1, xI p'2 => ad_eq_1 p'1 p'2 | _, _ => false end. Definition ad_eq (a a':ad) := match a, a' with | ad_z, ad_z => true | ad_x p, ad_x p' => ad_eq_1 p p' | _, _ => false end. Lemma ad_eq_correct : forall a:ad, ad_eq a a = true. Proof. destruct a; trivial. induction p; trivial. Qed. Lemma ad_eq_complete : forall a a':ad, ad_eq a a' = true -> a = a'. Proof. destruct a. destruct a'; trivial. destruct p. discriminate 1. discriminate 1. discriminate 1. destruct a'. intros. discriminate H. unfold ad_eq in |- *. intros. cut (p = p0). intros. rewrite H0. reflexivity. generalize dependent p0. induction p as [p IHp| p IHp| ]. destruct p0; intro H. rewrite (IHp p0). reflexivity. exact H. discriminate H. discriminate H. destruct p0; intro H. discriminate H. rewrite (IHp p0 H). reflexivity. discriminate H. destruct p0 as [p| p| ]; intro H. discriminate H. discriminate H. trivial. Qed. Lemma ad_eq_comm : forall a a':ad, ad_eq a a' = ad_eq a' a. Proof. intros. cut (forall b b':bool, ad_eq a a' = b -> ad_eq a' a = b' -> b = b'). intros. apply H. reflexivity. reflexivity. destruct b. intros. cut (a = a'). intro. rewrite H1 in H0. rewrite (ad_eq_correct a') in H0. exact H0. apply ad_eq_complete. exact H. destruct b'. intros. cut (a' = a). intro. rewrite H1 in H. rewrite H1 in H0. rewrite <- H. exact H0. apply ad_eq_complete. exact H0. trivial. Qed. Lemma ad_xor_eq_true : forall a a':ad, ad_xor a a' = ad_z -> ad_eq a a' = true. Proof. intros. rewrite (ad_xor_eq a a' H). apply ad_eq_correct. Qed. Lemma ad_xor_eq_false : forall (a a':ad) (p:positive), ad_xor a a' = ad_x p -> ad_eq a a' = false. Proof. intros. elim (sumbool_of_bool (ad_eq a a')). intro H0. rewrite (ad_eq_complete a a' H0) in H. rewrite (ad_xor_nilpotent a') in H. discriminate H. trivial. Qed. Lemma ad_bit_0_1_not_double : forall a:ad, ad_bit_0 a = true -> forall a0:ad, ad_eq (ad_double a0) a = false. Proof. intros. elim (sumbool_of_bool (ad_eq (ad_double a0) a)). intro H0. rewrite <- (ad_eq_complete _ _ H0) in H. rewrite (ad_double_bit_0 a0) in H. discriminate H. trivial. Qed. Lemma ad_not_div_2_not_double : forall a a0:ad, ad_eq (ad_div_2 a) a0 = false -> ad_eq a (ad_double a0) = false. Proof. intros. elim (sumbool_of_bool (ad_eq (ad_double a0) a)). intro H0. rewrite <- (ad_eq_complete _ _ H0) in H. rewrite (ad_double_div_2 a0) in H. rewrite (ad_eq_correct a0) in H. discriminate H. intro. rewrite ad_eq_comm. assumption. Qed. Lemma ad_bit_0_0_not_double_plus_un : forall a:ad, ad_bit_0 a = false -> forall a0:ad, ad_eq (ad_double_plus_un a0) a = false. Proof. intros. elim (sumbool_of_bool (ad_eq (ad_double_plus_un a0) a)). intro H0. rewrite <- (ad_eq_complete _ _ H0) in H. rewrite (ad_double_plus_un_bit_0 a0) in H. discriminate H. trivial. Qed. Lemma ad_not_div_2_not_double_plus_un : forall a a0:ad, ad_eq (ad_div_2 a) a0 = false -> ad_eq (ad_double_plus_un a0) a = false. Proof. intros. elim (sumbool_of_bool (ad_eq a (ad_double_plus_un a0))). intro H0. rewrite (ad_eq_complete _ _ H0) in H. rewrite (ad_double_plus_un_div_2 a0) in H. rewrite (ad_eq_correct a0) in H. discriminate H. intro H0. rewrite ad_eq_comm. assumption. Qed. Lemma ad_bit_0_neq : forall a a':ad, ad_bit_0 a = false -> ad_bit_0 a' = true -> ad_eq a a' = false. Proof. intros. elim (sumbool_of_bool (ad_eq a a')). intro H1. rewrite (ad_eq_complete _ _ H1) in H. rewrite H in H0. discriminate H0. trivial. Qed. Lemma ad_div_eq : forall a a':ad, ad_eq a a' = true -> ad_eq (ad_div_2 a) (ad_div_2 a') = true. Proof. intros. cut (a = a'). intros. rewrite H0. apply ad_eq_correct. apply ad_eq_complete. exact H. Qed. Lemma ad_div_neq : forall a a':ad, ad_eq (ad_div_2 a) (ad_div_2 a') = false -> ad_eq a a' = false. Proof. intros. elim (sumbool_of_bool (ad_eq a a')). intro H0. rewrite (ad_eq_complete _ _ H0) in H. rewrite (ad_eq_correct (ad_div_2 a')) in H. discriminate H. trivial. Qed. Lemma ad_div_bit_eq : forall a a':ad, ad_bit_0 a = ad_bit_0 a' -> ad_div_2 a = ad_div_2 a' -> a = a'. Proof. intros. apply ad_faithful. unfold eqf in |- *. destruct n. rewrite ad_bit_0_correct. rewrite ad_bit_0_correct. assumption. rewrite <- ad_div_2_correct. rewrite <- ad_div_2_correct. rewrite H0. reflexivity. Qed. Lemma ad_div_bit_neq : forall a a':ad, ad_eq a a' = false -> ad_bit_0 a = ad_bit_0 a' -> ad_eq (ad_div_2 a) (ad_div_2 a') = false. Proof. intros. elim (sumbool_of_bool (ad_eq (ad_div_2 a) (ad_div_2 a'))). intro H1. rewrite (ad_div_bit_eq _ _ H0 (ad_eq_complete _ _ H1)) in H. rewrite (ad_eq_correct a') in H. discriminate H. trivial. Qed. Lemma ad_neq : forall a a':ad, ad_eq a a' = false -> ad_bit_0 a = negb (ad_bit_0 a') \/ ad_eq (ad_div_2 a) (ad_div_2 a') = false. Proof. intros. cut (ad_bit_0 a = ad_bit_0 a' \/ ad_bit_0 a = negb (ad_bit_0 a')). intros. elim H0. intro. right. apply ad_div_bit_neq. assumption. assumption. intro. left. assumption. case (ad_bit_0 a); case (ad_bit_0 a'); auto. Qed. Lemma ad_double_or_double_plus_un : forall a:ad, {a0 : ad | a = ad_double a0} + {a1 : ad | a = ad_double_plus_un a1}. Proof. intro. elim (sumbool_of_bool (ad_bit_0 a)). intro H. right. split with (ad_div_2 a). rewrite (ad_div_2_double_plus_un a H). reflexivity. intro H. left. split with (ad_div_2 a). rewrite (ad_div_2_double a H). reflexivity. Qed.