(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* 0 | ad_x p => nat_of_P p end. Fixpoint nat_le (m:nat) : nat -> bool := match m with | O => fun _:nat => true | S m' => fun n:nat => match n with | O => false | S n' => nat_le m' n' end end. Lemma nat_le_correct : forall m n:nat, m <= n -> nat_le m n = true. Proof. induction m as [| m IHm]. trivial. destruct n. intro H. elim (le_Sn_O _ H). intros. simpl in |- *. apply IHm. apply le_S_n. assumption. Qed. Lemma nat_le_complete : forall m n:nat, nat_le m n = true -> m <= n. Proof. induction m. trivial with arith. destruct n. intro H. discriminate H. auto with arith. Qed. Lemma nat_le_correct_conv : forall m n:nat, m < n -> nat_le n m = false. Proof. intros. elim (sumbool_of_bool (nat_le n m)). intro H0. elim (lt_irrefl _ (lt_le_trans _ _ _ H (nat_le_complete _ _ H0))). trivial. Qed. Lemma nat_le_complete_conv : forall m n:nat, nat_le n m = false -> m < n. Proof. intros. elim (le_or_lt n m). intro. conditional trivial rewrite nat_le_correct in H. discriminate H. trivial. Qed. Definition ad_of_nat (n:nat) := match n with | O => ad_z | S n' => ad_x (P_of_succ_nat n') end. Lemma ad_of_nat_of_ad : forall a:ad, ad_of_nat (nat_of_ad a) = a. Proof. destruct a as [| p]. reflexivity. simpl in |- *. elim (ZL4 p). intros n H. rewrite H. simpl in |- *. rewrite <- nat_of_P_o_P_of_succ_nat_eq_succ in H. rewrite nat_of_P_inj with (1 := H). reflexivity. Qed. Lemma nat_of_ad_of_nat : forall n:nat, nat_of_ad (ad_of_nat n) = n. Proof. induction n. trivial. intros. simpl in |- *. apply nat_of_P_o_P_of_succ_nat_eq_succ. Qed. Definition ad_le (a b:ad) := nat_le (nat_of_ad a) (nat_of_ad b). Lemma ad_le_refl : forall a:ad, ad_le a a = true. Proof. intro. unfold ad_le in |- *. apply nat_le_correct. apply le_n. Qed. Lemma ad_le_antisym : forall a b:ad, ad_le a b = true -> ad_le b a = true -> a = b. Proof. unfold ad_le in |- *. intros. rewrite <- (ad_of_nat_of_ad a). rewrite <- (ad_of_nat_of_ad b). rewrite (le_antisym _ _ (nat_le_complete _ _ H) (nat_le_complete _ _ H0)). reflexivity. Qed. Lemma ad_le_trans : forall a b c:ad, ad_le a b = true -> ad_le b c = true -> ad_le a c = true. Proof. unfold ad_le in |- *. intros. apply nat_le_correct. apply le_trans with (m := nat_of_ad b). apply nat_le_complete. assumption. apply nat_le_complete. assumption. Qed. Lemma ad_le_lt_trans : forall a b c:ad, ad_le a b = true -> ad_le c b = false -> ad_le c a = false. Proof. unfold ad_le in |- *. intros. apply nat_le_correct_conv. apply le_lt_trans with (m := nat_of_ad b). apply nat_le_complete. assumption. apply nat_le_complete_conv. assumption. Qed. Lemma ad_lt_le_trans : forall a b c:ad, ad_le b a = false -> ad_le b c = true -> ad_le c a = false. Proof. unfold ad_le in |- *. intros. apply nat_le_correct_conv. apply lt_le_trans with (m := nat_of_ad b). apply nat_le_complete_conv. assumption. apply nat_le_complete. assumption. Qed. Lemma ad_lt_trans : forall a b c:ad, ad_le b a = false -> ad_le c b = false -> ad_le c a = false. Proof. unfold ad_le in |- *. intros. apply nat_le_correct_conv. apply lt_trans with (m := nat_of_ad b). apply nat_le_complete_conv. assumption. apply nat_le_complete_conv. assumption. Qed. Lemma ad_lt_le_weak : forall a b:ad, ad_le b a = false -> ad_le a b = true. Proof. unfold ad_le in |- *. intros. apply nat_le_correct. apply lt_le_weak. apply nat_le_complete_conv. assumption. Qed. Definition ad_min (a b:ad) := if ad_le a b then a else b. Lemma ad_min_choice : forall a b:ad, {ad_min a b = a} + {ad_min a b = b}. Proof. unfold ad_min in |- *. intros. elim (sumbool_of_bool (ad_le a b)). intro H. left. rewrite H. reflexivity. intro H. right. rewrite H. reflexivity. Qed. Lemma ad_min_le_1 : forall a b:ad, ad_le (ad_min a b) a = true. Proof. unfold ad_min in |- *. intros. elim (sumbool_of_bool (ad_le a b)). intro H. rewrite H. apply ad_le_refl. intro H. rewrite H. apply ad_lt_le_weak. assumption. Qed. Lemma ad_min_le_2 : forall a b:ad, ad_le (ad_min a b) b = true. Proof. unfold ad_min in |- *. intros. elim (sumbool_of_bool (ad_le a b)). intro H. rewrite H. assumption. intro H. rewrite H. apply ad_le_refl. Qed. Lemma ad_min_le_3 : forall a b c:ad, ad_le a (ad_min b c) = true -> ad_le a b = true. Proof. unfold ad_min in |- *. intros. elim (sumbool_of_bool (ad_le b c)). intro H0. rewrite H0 in H. assumption. intro H0. rewrite H0 in H. apply ad_lt_le_weak. apply ad_le_lt_trans with (b := c); assumption. Qed. Lemma ad_min_le_4 : forall a b c:ad, ad_le a (ad_min b c) = true -> ad_le a c = true. Proof. unfold ad_min in |- *. intros. elim (sumbool_of_bool (ad_le b c)). intro H0. rewrite H0 in H. apply ad_le_trans with (b := b); assumption. intro H0. rewrite H0 in H. assumption. Qed. Lemma ad_min_le_5 : forall a b c:ad, ad_le a b = true -> ad_le a c = true -> ad_le a (ad_min b c) = true. Proof. intros. elim (ad_min_choice b c). intro H1. rewrite H1. assumption. intro H1. rewrite H1. assumption. Qed. Lemma ad_min_lt_3 : forall a b c:ad, ad_le (ad_min b c) a = false -> ad_le b a = false. Proof. unfold ad_min in |- *. intros. elim (sumbool_of_bool (ad_le b c)). intro H0. rewrite H0 in H. assumption. intro H0. rewrite H0 in H. apply ad_lt_trans with (b := c); assumption. Qed. Lemma ad_min_lt_4 : forall a b c:ad, ad_le (ad_min b c) a = false -> ad_le c a = false. Proof. unfold ad_min in |- *. intros. elim (sumbool_of_bool (ad_le b c)). intro H0. rewrite H0 in H. apply ad_lt_le_trans with (b := b); assumption. intro H0. rewrite H0 in H. assumption. Qed. (** Allocator: returns an address not in the domain of [m]. This allocator is optimal in that it returns the lowest possible address, in the usual ordering on integers. It is not the most efficient, however. *) Fixpoint ad_alloc_opt (m:Map A) : ad := match m with | M0 => ad_z | M1 a _ => if ad_eq a ad_z then ad_x 1 else ad_z | M2 m1 m2 => ad_min (ad_double (ad_alloc_opt m1)) (ad_double_plus_un (ad_alloc_opt m2)) end. Lemma ad_alloc_opt_allocates_1 : forall m:Map A, MapGet A m (ad_alloc_opt m) = NONE A. Proof. induction m as [| a| m0 H m1 H0]. reflexivity. simpl in |- *. elim (sumbool_of_bool (ad_eq a ad_z)). intro H. rewrite H. rewrite (ad_eq_complete _ _ H). reflexivity. intro H. rewrite H. rewrite H. reflexivity. intros. change (ad_alloc_opt (M2 A m0 m1)) with (ad_min (ad_double (ad_alloc_opt m0)) (ad_double_plus_un (ad_alloc_opt m1))) in |- *. elim (ad_min_choice (ad_double (ad_alloc_opt m0)) (ad_double_plus_un (ad_alloc_opt m1))). intro H1. rewrite H1. rewrite MapGet_M2_bit_0_0. rewrite ad_double_div_2. assumption. apply ad_double_bit_0. intro H1. rewrite H1. rewrite MapGet_M2_bit_0_1. rewrite ad_double_plus_un_div_2. assumption. apply ad_double_plus_un_bit_0. Qed. Lemma ad_alloc_opt_allocates : forall m:Map A, in_dom A (ad_alloc_opt m) m = false. Proof. unfold in_dom in |- *. intro. rewrite (ad_alloc_opt_allocates_1 m). reflexivity. Qed. (** Moreover, this is optimal: all addresses below [(ad_alloc_opt m)] are in [dom m]: *) Lemma nat_of_ad_double : forall a:ad, nat_of_ad (ad_double a) = 2 * nat_of_ad a. Proof. destruct a as [| p]. trivial. exact (nat_of_P_xO p). Qed. Lemma nat_of_ad_double_plus_un : forall a:ad, nat_of_ad (ad_double_plus_un a) = S (2 * nat_of_ad a). Proof. destruct a as [| p]. trivial. exact (nat_of_P_xI p). Qed. Lemma ad_le_double_mono : forall a b:ad, ad_le a b = true -> ad_le (ad_double a) (ad_double b) = true. Proof. unfold ad_le in |- *. intros. rewrite nat_of_ad_double. rewrite nat_of_ad_double. apply nat_le_correct. simpl in |- *. apply plus_le_compat. apply nat_le_complete. assumption. apply plus_le_compat. apply nat_le_complete. assumption. apply le_n. Qed. Lemma ad_le_double_plus_un_mono : forall a b:ad, ad_le a b = true -> ad_le (ad_double_plus_un a) (ad_double_plus_un b) = true. Proof. unfold ad_le in |- *. intros. rewrite nat_of_ad_double_plus_un. rewrite nat_of_ad_double_plus_un. apply nat_le_correct. apply le_n_S. simpl in |- *. apply plus_le_compat. apply nat_le_complete. assumption. apply plus_le_compat. apply nat_le_complete. assumption. apply le_n. Qed. Lemma ad_le_double_mono_conv : forall a b:ad, ad_le (ad_double a) (ad_double b) = true -> ad_le a b = true. Proof. unfold ad_le in |- *. intros a b. rewrite nat_of_ad_double. rewrite nat_of_ad_double. intro. apply nat_le_correct. apply (mult_S_le_reg_l 1). apply nat_le_complete. assumption. Qed. Lemma ad_le_double_plus_un_mono_conv : forall a b:ad, ad_le (ad_double_plus_un a) (ad_double_plus_un b) = true -> ad_le a b = true. Proof. unfold ad_le in |- *. intros a b. rewrite nat_of_ad_double_plus_un. rewrite nat_of_ad_double_plus_un. intro. apply nat_le_correct. apply (mult_S_le_reg_l 1). apply le_S_n. apply nat_le_complete. assumption. Qed. Lemma ad_lt_double_mono : forall a b:ad, ad_le a b = false -> ad_le (ad_double a) (ad_double b) = false. Proof. intros. elim (sumbool_of_bool (ad_le (ad_double a) (ad_double b))). intro H0. rewrite (ad_le_double_mono_conv _ _ H0) in H. discriminate H. trivial. Qed. Lemma ad_lt_double_plus_un_mono : forall a b:ad, ad_le a b = false -> ad_le (ad_double_plus_un a) (ad_double_plus_un b) = false. Proof. intros. elim (sumbool_of_bool (ad_le (ad_double_plus_un a) (ad_double_plus_un b))). intro H0. rewrite (ad_le_double_plus_un_mono_conv _ _ H0) in H. discriminate H. trivial. Qed. Lemma ad_lt_double_mono_conv : forall a b:ad, ad_le (ad_double a) (ad_double b) = false -> ad_le a b = false. Proof. intros. elim (sumbool_of_bool (ad_le a b)). intro H0. rewrite (ad_le_double_mono _ _ H0) in H. discriminate H. trivial. Qed. Lemma ad_lt_double_plus_un_mono_conv : forall a b:ad, ad_le (ad_double_plus_un a) (ad_double_plus_un b) = false -> ad_le a b = false. Proof. intros. elim (sumbool_of_bool (ad_le a b)). intro H0. rewrite (ad_le_double_plus_un_mono _ _ H0) in H. discriminate H. trivial. Qed. Lemma ad_alloc_opt_optimal_1 : forall (m:Map A) (a:ad), ad_le (ad_alloc_opt m) a = false -> {y : A | MapGet A m a = SOME A y}. Proof. induction m as [| a y| m0 H m1 H0]. simpl in |- *. unfold ad_le in |- *. simpl in |- *. intros. discriminate H. simpl in |- *. intros b H. elim (sumbool_of_bool (ad_eq a ad_z)). intro H0. rewrite H0 in H. unfold ad_le in H. cut (ad_z = b). intro. split with y. rewrite <- H1. rewrite H0. reflexivity. rewrite <- (ad_of_nat_of_ad b). rewrite <- (le_n_O_eq _ (le_S_n _ _ (nat_le_complete_conv _ _ H))). reflexivity. intro H0. rewrite H0 in H. discriminate H. intros. simpl in H1. elim (ad_double_or_double_plus_un a). intro H2. elim H2. intros a0 H3. rewrite H3 in H1. elim (H _ (ad_lt_double_mono_conv _ _ (ad_min_lt_3 _ _ _ H1))). intros y H4. split with y. rewrite H3. rewrite MapGet_M2_bit_0_0. rewrite ad_double_div_2. assumption. apply ad_double_bit_0. intro H2. elim H2. intros a0 H3. rewrite H3 in H1. elim (H0 _ (ad_lt_double_plus_un_mono_conv _ _ (ad_min_lt_4 _ _ _ H1))). intros y H4. split with y. rewrite H3. rewrite MapGet_M2_bit_0_1. rewrite ad_double_plus_un_div_2. assumption. apply ad_double_plus_un_bit_0. Qed. Lemma ad_alloc_opt_optimal : forall (m:Map A) (a:ad), ad_le (ad_alloc_opt m) a = false -> in_dom A a m = true. Proof. intros. unfold in_dom in |- *. elim (ad_alloc_opt_optimal_1 m a H). intros y H0. rewrite H0. reflexivity. Qed. End AdAlloc.