(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* n | S u => u end. Hint Resolve (f_equal pred): v62. Theorem pred_Sn : forall n:nat, n = pred (S n). Proof. simpl; reflexivity. Qed. (** Injectivity of successor *) Definition eq_add_S n m (H: S n = S m): n = m := f_equal pred H. Hint Immediate eq_add_S: core. Theorem not_eq_S : forall n m:nat, n <> m -> S n <> S m. Proof. red; auto. Qed. Hint Resolve not_eq_S: core. Definition IsSucc (n:nat) : Prop := match n with | O => False | S p => True end. (** Zero is not the successor of a number *) Theorem O_S : forall n:nat, 0 <> S n. Proof. discriminate. Qed. Hint Resolve O_S: core. Theorem n_Sn : forall n:nat, n <> S n. Proof. induction n; auto. Qed. Hint Resolve n_Sn: core. (** Addition *) Fixpoint plus (n m:nat) : nat := match n with | O => m | S p => S (p + m) end where "n + m" := (plus n m) : nat_scope. Hint Resolve (f_equal2 plus): v62. Hint Resolve (f_equal2 (A1:=nat) (A2:=nat)): core. Lemma plus_n_O : forall n:nat, n = n + 0. Proof. induction n; simpl; auto. Qed. Hint Resolve plus_n_O: core. Lemma plus_O_n : forall n:nat, 0 + n = n. Proof. auto. Qed. Lemma plus_n_Sm : forall n m:nat, S (n + m) = n + S m. Proof. intros n m; induction n; simpl; auto. Qed. Hint Resolve plus_n_Sm: core. Lemma plus_Sn_m : forall n m:nat, S n + m = S (n + m). Proof. auto. Qed. (** Standard associated names *) Notation plus_0_r_reverse := plus_n_O (compat "8.2"). Notation plus_succ_r_reverse := plus_n_Sm (compat "8.2"). (** Multiplication *) Fixpoint mult (n m:nat) : nat := match n with | O => 0 | S p => m + p * m end where "n * m" := (mult n m) : nat_scope. Hint Resolve (f_equal2 mult): core. Lemma mult_n_O : forall n:nat, 0 = n * 0. Proof. induction n; simpl; auto. Qed. Hint Resolve mult_n_O: core. Lemma mult_n_Sm : forall n m:nat, n * m + n = n * S m. Proof. intros; induction n as [| p H]; simpl; auto. destruct H; rewrite <- plus_n_Sm; apply eq_S. pattern m at 1 3; elim m; simpl; auto. Qed. Hint Resolve mult_n_Sm: core. (** Standard associated names *) Notation mult_0_r_reverse := mult_n_O (compat "8.2"). Notation mult_succ_r_reverse := mult_n_Sm (compat "8.2"). (** Truncated subtraction: [m-n] is [0] if [n>=m] *) Fixpoint minus (n m:nat) : nat := match n, m with | O, _ => n | S k, O => n | S k, S l => k - l end where "n - m" := (minus n m) : nat_scope. (** Definition of the usual orders, the basic properties of [le] and [lt] can be found in files Le and Lt *) Inductive le (n:nat) : nat -> Prop := | le_n : n <= n | le_S : forall m:nat, n <= m -> n <= S m where "n <= m" := (le n m) : nat_scope. Hint Constructors le: core. (*i equivalent to : "Hints Resolve le_n le_S : core." i*) Definition lt (n m:nat) := S n <= m. Hint Unfold lt: core. Infix "<" := lt : nat_scope. Definition ge (n m:nat) := m <= n. Hint Unfold ge: core. Infix ">=" := ge : nat_scope. Definition gt (n m:nat) := m < n. Hint Unfold gt: core. Infix ">" := gt : nat_scope. Notation "x <= y <= z" := (x <= y /\ y <= z) : nat_scope. Notation "x <= y < z" := (x <= y /\ y < z) : nat_scope. Notation "x < y < z" := (x < y /\ y < z) : nat_scope. Notation "x < y <= z" := (x < y /\ y <= z) : nat_scope. Theorem le_pred : forall n m, n <= m -> pred n <= pred m. Proof. induction 1; auto. destruct m; simpl; auto. Qed. Theorem le_S_n : forall n m, S n <= S m -> n <= m. Proof. intros n m. exact (le_pred (S n) (S m)). Qed. (** Case analysis *) Theorem nat_case : forall (n:nat) (P:nat -> Prop), P 0 -> (forall m:nat, P (S m)) -> P n. Proof. induction n; auto. Qed. (** Principle of double induction *) Theorem nat_double_ind : forall R:nat -> nat -> Prop, (forall n:nat, R 0 n) -> (forall n:nat, R (S n) 0) -> (forall n m:nat, R n m -> R (S n) (S m)) -> forall n m:nat, R n m. Proof. induction n; auto. destruct m; auto. Qed. (** Maximum and minimum : definitions and specifications *) Fixpoint max n m : nat := match n, m with | O, _ => m | S n', O => n | S n', S m' => S (max n' m') end. Fixpoint min n m : nat := match n, m with | O, _ => 0 | S n', O => 0 | S n', S m' => S (min n' m') end. Theorem max_l : forall n m : nat, m <= n -> max n m = n. Proof. induction n; destruct m; simpl; auto. inversion 1. intros. apply f_equal. apply IHn. apply le_S_n. trivial. Qed. Theorem max_r : forall n m : nat, n <= m -> max n m = m. Proof. induction n; destruct m; simpl; auto. inversion 1. intros. apply f_equal. apply IHn. apply le_S_n. trivial. Qed. Theorem min_l : forall n m : nat, n <= m -> min n m = n. Proof. induction n; destruct m; simpl; auto. inversion 1. intros. apply f_equal. apply IHn. apply le_S_n. trivial. Qed. Theorem min_r : forall n m : nat, m <= n -> min n m = m. Proof. induction n; destruct m; simpl; auto. inversion 1. intros. apply f_equal. apply IHn. apply le_S_n. trivial. Qed. (** [n]th iteration of the function [f] *) Fixpoint nat_iter (n:nat) {A} (f:A->A) (x:A) : A := match n with | O => x | S n' => f (nat_iter n' f x) end. Lemma nat_iter_succ_r n {A} (f:A->A) (x:A) : nat_iter (S n) f x = nat_iter n f (f x). Proof. induction n; intros; simpl; rewrite <- ?IHn; trivial. Qed. Theorem nat_iter_plus : forall (n m:nat) {A} (f:A -> A) (x:A), nat_iter (n + m) f x = nat_iter n f (nat_iter m f x). Proof. induction n; intros; simpl; rewrite ?IHn; trivial. Qed. (** Preservation of invariants : if [f : A->A] preserves the invariant [Inv], then the iterates of [f] also preserve it. *) Theorem nat_iter_invariant : forall (n:nat) {A} (f:A -> A) (P : A -> Prop), (forall x, P x -> P (f x)) -> forall x, P x -> P (nat_iter n f x). Proof. induction n; simpl; trivial. intros A f P Hf x Hx. apply Hf, IHn; trivial. Qed.