(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* False. Section identity_is_a_congruence. Variables A B : Type. Variable f : A -> B. Variables x y z : A. Lemma sym_id : identity x y -> identity y x. Proof. destruct 1; trivial. Qed. Lemma trans_id : identity x y -> identity y z -> identity x z. Proof. destruct 2; trivial. Qed. Lemma congr_id : identity x y -> identity (f x) (f y). Proof. destruct 1; trivial. Qed. Lemma sym_not_id : notT (identity x y) -> notT (identity y x). Proof. red in |- *; intros H H'; apply H; destruct H'; trivial. Qed. End identity_is_a_congruence. Definition identity_ind_r : forall (A:Type) (a:A) (P:A -> Prop), P a -> forall y:A, identity y a -> P y. intros A x P H y H0; case sym_id with (1 := H0); trivial. Defined. Definition identity_rec_r : forall (A:Type) (a:A) (P:A -> Set), P a -> forall y:A, identity y a -> P y. intros A x P H y H0; case sym_id with (1 := H0); trivial. Defined. Definition identity_rect_r : forall (A:Type) (a:A) (P:A -> Type), P a -> forall y:A, identity y a -> P y. intros A x P H y H0; case sym_id with (1 := H0); trivial. Defined. Inductive prodT (A B:Type) : Type := pairT : A -> B -> prodT A B. Section prodT_proj. Variables A B : Type. Definition fstT (H:prodT A B) := match H with | pairT x _ => x end. Definition sndT (H:prodT A B) := match H with | pairT _ y => y end. End prodT_proj. Definition prodT_uncurry (A B C:Type) (f:prodT A B -> C) (x:A) (y:B) : C := f (pairT x y). Definition prodT_curry (A B C:Type) (f:A -> B -> C) (p:prodT A B) : C := match p with | pairT x y => f x y end. Hint Immediate sym_id sym_not_id: core v62.