(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* X -> Prop) (x y : X) : Type := | LT : lt x y -> Compare lt eq x y | EQ : eq x y -> Compare lt eq x y | GT : lt y x -> Compare lt eq x y. Module Type MiniOrderedType. Parameter Inline t : Type. Parameter Inline eq : t -> t -> Prop. Parameter Inline lt : t -> t -> Prop. Axiom eq_refl : forall x : t, eq x x. Axiom eq_sym : forall x y : t, eq x y -> eq y x. Axiom eq_trans : forall x y z : t, eq x y -> eq y z -> eq x z. Axiom lt_trans : forall x y z : t, lt x y -> lt y z -> lt x z. Axiom lt_not_eq : forall x y : t, lt x y -> ~ eq x y. Parameter compare : forall x y : t, Compare lt eq x y. Hint Immediate eq_sym. Hint Resolve eq_refl eq_trans lt_not_eq lt_trans. End MiniOrderedType. Module Type OrderedType. Include Type MiniOrderedType. (** A [eq_dec] can be deduced from [compare] below. But adding this redundant field allows to see an OrderedType as a DecidableType. *) Parameter eq_dec : forall x y, { eq x y } + { ~ eq x y }. End OrderedType. Module MOT_to_OT (Import O : MiniOrderedType) <: OrderedType. Include O. Definition eq_dec : forall x y : t, {eq x y} + {~ eq x y}. Proof. intros; elim (compare x y); intro H; [ right | left | right ]; auto. assert (~ eq y x); auto. Defined. End MOT_to_OT. (** * Ordered types properties *) (** Additional properties that can be derived from signature [OrderedType]. *) Module OrderedTypeFacts (Import O: OrderedType). Lemma lt_antirefl : forall x, ~ lt x x. Proof. intros; intro; absurd (eq x x); auto. Qed. Lemma lt_eq : forall x y z, lt x y -> eq y z -> lt x z. Proof. intros; destruct (compare x z); auto. elim (lt_not_eq H); apply eq_trans with z; auto. elim (lt_not_eq (lt_trans l H)); auto. Qed. Lemma eq_lt : forall x y z, eq x y -> lt y z -> lt x z. Proof. intros; destruct (compare x z); auto. elim (lt_not_eq H0); apply eq_trans with x; auto. elim (lt_not_eq (lt_trans H0 l)); auto. Qed. Lemma le_eq : forall x y z, ~lt x y -> eq y z -> ~lt x z. Proof. intros; intro; destruct H; apply lt_eq with z; auto. Qed. Lemma eq_le : forall x y z, eq x y -> ~lt y z -> ~lt x z. Proof. intros; intro; destruct H0; apply eq_lt with x; auto. Qed. Lemma neq_eq : forall x y z, ~eq x y -> eq y z -> ~eq x z. Proof. intros; intro; destruct H; apply eq_trans with z; auto. Qed. Lemma eq_neq : forall x y z, eq x y -> ~eq y z -> ~eq x z. Proof. intros; intro; destruct H0; apply eq_trans with x; auto. Qed. Hint Immediate eq_lt lt_eq le_eq eq_le neq_eq eq_neq. Lemma le_lt_trans : forall x y z, ~lt y x -> lt y z -> lt x z. Proof. intros; destruct (compare y x); auto. elim (H l). apply eq_lt with y; auto. apply lt_trans with y; auto. Qed. Lemma lt_le_trans : forall x y z, lt x y -> ~lt z y -> lt x z. Proof. intros; destruct (compare z y); auto. elim (H0 l). apply lt_eq with y; auto. apply lt_trans with y; auto. Qed. Lemma le_neq : forall x y, ~lt x y -> ~eq x y -> lt y x. Proof. intros; destruct (compare x y); intuition. Qed. Lemma neq_sym : forall x y, ~eq x y -> ~eq y x. Proof. intuition. Qed. (* TODO concernant la tactique order: * propagate_lt n'est sans doute pas complet * un propagate_le * exploiter les hypotheses negatives restant a la fin * faire que ca marche meme quand une hypothese depend d'un eq ou lt. *) Ltac abstraction := match goal with (* First, some obvious simplifications *) | H : False |- _ => elim H | H : lt ?x ?x |- _ => elim (lt_antirefl H) | H : ~eq ?x ?x |- _ => elim (H (eq_refl x)) | H : eq ?x ?x |- _ => clear H; abstraction | H : ~lt ?x ?x |- _ => clear H; abstraction | |- eq ?x ?x => exact (eq_refl x) | |- lt ?x ?x => elimtype False; abstraction | |- ~ _ => intro; abstraction | H1: ~lt ?x ?y, H2: ~eq ?x ?y |- _ => generalize (le_neq H1 H2); clear H1 H2; intro; abstraction | H1: ~lt ?x ?y, H2: ~eq ?y ?x |- _ => generalize (le_neq H1 (neq_sym H2)); clear H1 H2; intro; abstraction (* Then, we generalize all interesting facts *) | H : ~eq ?x ?y |- _ => revert H; abstraction | H : ~lt ?x ?y |- _ => revert H; abstraction | H : lt ?x ?y |- _ => revert H; abstraction | H : eq ?x ?y |- _ => revert H; abstraction | _ => idtac end. Ltac do_eq a b EQ := match goal with | |- lt ?x ?y -> _ => let H := fresh "H" in (intro H; (generalize (eq_lt (eq_sym EQ) H); clear H; intro H) || (generalize (lt_eq H EQ); clear H; intro H) || idtac); do_eq a b EQ | |- ~lt ?x ?y -> _ => let H := fresh "H" in (intro H; (generalize (eq_le (eq_sym EQ) H); clear H; intro H) || (generalize (le_eq H EQ); clear H; intro H) || idtac); do_eq a b EQ | |- eq ?x ?y -> _ => let H := fresh "H" in (intro H; (generalize (eq_trans (eq_sym EQ) H); clear H; intro H) || (generalize (eq_trans H EQ); clear H; intro H) || idtac); do_eq a b EQ | |- ~eq ?x ?y -> _ => let H := fresh "H" in (intro H; (generalize (eq_neq (eq_sym EQ) H); clear H; intro H) || (generalize (neq_eq H EQ); clear H; intro H) || idtac); do_eq a b EQ | |- lt a ?y => apply eq_lt with b; [exact EQ|] | |- lt ?y a => apply lt_eq with b; [|exact (eq_sym EQ)] | |- eq a ?y => apply eq_trans with b; [exact EQ|] | |- eq ?y a => apply eq_trans with b; [|exact (eq_sym EQ)] | _ => idtac end. Ltac propagate_eq := abstraction; clear; match goal with (* the abstraction tactic leaves equality facts in head position...*) | |- eq ?a ?b -> _ => let EQ := fresh "EQ" in (intro EQ; do_eq a b EQ; clear EQ); propagate_eq | _ => idtac end. Ltac do_lt x y LT := match goal with (* LT *) | |- lt x y -> _ => intros _; do_lt x y LT | |- lt y ?z -> _ => let H := fresh "H" in (intro H; generalize (lt_trans LT H); intro); do_lt x y LT | |- lt ?z x -> _ => let H := fresh "H" in (intro H; generalize (lt_trans H LT); intro); do_lt x y LT | |- lt _ _ -> _ => intro; do_lt x y LT (* GE *) | |- ~lt y x -> _ => intros _; do_lt x y LT | |- ~lt x ?z -> _ => let H := fresh "H" in (intro H; generalize (le_lt_trans H LT); intro); do_lt x y LT | |- ~lt ?z y -> _ => let H := fresh "H" in (intro H; generalize (lt_le_trans LT H); intro); do_lt x y LT | |- ~lt _ _ -> _ => intro; do_lt x y LT | _ => idtac end. Definition hide_lt := lt. Ltac propagate_lt := abstraction; match goal with (* when no [=] remains, the abstraction tactic leaves [<] facts first. *) | |- lt ?x ?y -> _ => let LT := fresh "LT" in (intro LT; do_lt x y LT; change (hide_lt x y) in LT); propagate_lt | _ => unfold hide_lt in * end. Ltac order := intros; propagate_eq; propagate_lt; auto; propagate_lt; eauto. Ltac false_order := elimtype False; order. Lemma gt_not_eq : forall x y, lt y x -> ~ eq x y. Proof. order. Qed. Lemma eq_not_lt : forall x y : t, eq x y -> ~ lt x y. Proof. order. Qed. Hint Resolve gt_not_eq eq_not_lt. Lemma eq_not_gt : forall x y : t, eq x y -> ~ lt y x. Proof. order. Qed. Lemma lt_not_gt : forall x y : t, lt x y -> ~ lt y x. Proof. order. Qed. Hint Resolve eq_not_gt lt_antirefl lt_not_gt. Lemma elim_compare_eq : forall x y : t, eq x y -> exists H : eq x y, compare x y = EQ _ H. Proof. intros; case (compare x y); intros H'; try solve [false_order]. exists H'; auto. Qed. Lemma elim_compare_lt : forall x y : t, lt x y -> exists H : lt x y, compare x y = LT _ H. Proof. intros; case (compare x y); intros H'; try solve [false_order]. exists H'; auto. Qed. Lemma elim_compare_gt : forall x y : t, lt y x -> exists H : lt y x, compare x y = GT _ H. Proof. intros; case (compare x y); intros H'; try solve [false_order]. exists H'; auto. Qed. Ltac elim_comp := match goal with | |- ?e => match e with | context ctx [ compare ?a ?b ] => let H := fresh in (destruct (compare a b) as [H|H|H]; try solve [ intros; false_order]) end end. Ltac elim_comp_eq x y := elim (elim_compare_eq (x:=x) (y:=y)); [ intros _1 _2; rewrite _2; clear _1 _2 | auto ]. Ltac elim_comp_lt x y := elim (elim_compare_lt (x:=x) (y:=y)); [ intros _1 _2; rewrite _2; clear _1 _2 | auto ]. Ltac elim_comp_gt x y := elim (elim_compare_gt (x:=x) (y:=y)); [ intros _1 _2; rewrite _2; clear _1 _2 | auto ]. (** For compatibility reasons *) Definition eq_dec := eq_dec. Lemma lt_dec : forall x y : t, {lt x y} + {~ lt x y}. Proof. intros; elim (compare x y); [ left | right | right ]; auto. Defined. Definition eqb x y : bool := if eq_dec x y then true else false. Lemma eqb_alt : forall x y, eqb x y = match compare x y with EQ _ => true | _ => false end. Proof. unfold eqb; intros; destruct (eq_dec x y); elim_comp; auto. Qed. (* Specialization of resuts about lists modulo. *) Section ForNotations. Notation In:=(InA eq). Notation Inf:=(lelistA lt). Notation Sort:=(sort lt). Notation NoDup:=(NoDupA eq). Lemma In_eq : forall l x y, eq x y -> In x l -> In y l. Proof. exact (InA_eqA eq_sym eq_trans). Qed. Lemma ListIn_In : forall l x, List.In x l -> In x l. Proof. exact (In_InA eq_refl). Qed. Lemma Inf_lt : forall l x y, lt x y -> Inf y l -> Inf x l. Proof. exact (InfA_ltA lt_trans). Qed. Lemma Inf_eq : forall l x y, eq x y -> Inf y l -> Inf x l. Proof. exact (InfA_eqA eq_lt). Qed. Lemma Sort_Inf_In : forall l x a, Sort l -> Inf a l -> In x l -> lt a x. Proof. exact (SortA_InfA_InA eq_refl eq_sym lt_trans lt_eq eq_lt). Qed. Lemma ListIn_Inf : forall l x, (forall y, List.In y l -> lt x y) -> Inf x l. Proof. exact (@In_InfA t lt). Qed. Lemma In_Inf : forall l x, (forall y, In y l -> lt x y) -> Inf x l. Proof. exact (InA_InfA eq_refl (ltA:=lt)). Qed. Lemma Inf_alt : forall l x, Sort l -> (Inf x l <-> (forall y, In y l -> lt x y)). Proof. exact (InfA_alt eq_refl eq_sym lt_trans lt_eq eq_lt). Qed. Lemma Sort_NoDup : forall l, Sort l -> NoDup l. Proof. exact (SortA_NoDupA eq_refl eq_sym lt_trans lt_not_eq lt_eq eq_lt) . Qed. End ForNotations. Hint Resolve ListIn_In Sort_NoDup Inf_lt. Hint Immediate In_eq Inf_lt. End OrderedTypeFacts. Module KeyOrderedType(O:OrderedType). Import O. Module MO:=OrderedTypeFacts(O). Import MO. Section Elt. Variable elt : Type. Notation key:=t. Definition eqk (p p':key*elt) := eq (fst p) (fst p'). Definition eqke (p p':key*elt) := eq (fst p) (fst p') /\ (snd p) = (snd p'). Definition ltk (p p':key*elt) := lt (fst p) (fst p'). Hint Unfold eqk eqke ltk. Hint Extern 2 (eqke ?a ?b) => split. (* eqke is stricter than eqk *) Lemma eqke_eqk : forall x x', eqke x x' -> eqk x x'. Proof. unfold eqk, eqke; intuition. Qed. (* ltk ignore the second components *) Lemma ltk_right_r : forall x k e e', ltk x (k,e) -> ltk x (k,e'). Proof. auto. Qed. Lemma ltk_right_l : forall x k e e', ltk (k,e) x -> ltk (k,e') x. Proof. auto. Qed. Hint Immediate ltk_right_r ltk_right_l. (* eqk, eqke are equalities, ltk is a strict order *) Lemma eqk_refl : forall e, eqk e e. Proof. auto. Qed. Lemma eqke_refl : forall e, eqke e e. Proof. auto. Qed. Lemma eqk_sym : forall e e', eqk e e' -> eqk e' e. Proof. auto. Qed. Lemma eqke_sym : forall e e', eqke e e' -> eqke e' e. Proof. unfold eqke; intuition. Qed. Lemma eqk_trans : forall e e' e'', eqk e e' -> eqk e' e'' -> eqk e e''. Proof. eauto. Qed. Lemma eqke_trans : forall e e' e'', eqke e e' -> eqke e' e'' -> eqke e e''. Proof. unfold eqke; intuition; [ eauto | congruence ]. Qed. Lemma ltk_trans : forall e e' e'', ltk e e' -> ltk e' e'' -> ltk e e''. Proof. eauto. Qed. Lemma ltk_not_eqk : forall e e', ltk e e' -> ~ eqk e e'. Proof. unfold eqk, ltk; auto. Qed. Lemma ltk_not_eqke : forall e e', ltk e e' -> ~eqke e e'. Proof. unfold eqke, ltk; intuition; simpl in *; subst. exact (lt_not_eq H H1). Qed. Hint Resolve eqk_trans eqke_trans eqk_refl eqke_refl. Hint Resolve ltk_trans ltk_not_eqk ltk_not_eqke. Hint Immediate eqk_sym eqke_sym. (* Additionnal facts *) Lemma eqk_not_ltk : forall x x', eqk x x' -> ~ltk x x'. Proof. unfold eqk, ltk; simpl; auto. Qed. Lemma ltk_eqk : forall e e' e'', ltk e e' -> eqk e' e'' -> ltk e e''. Proof. eauto. Qed. Lemma eqk_ltk : forall e e' e'', eqk e e' -> ltk e' e'' -> ltk e e''. Proof. intros (k,e) (k',e') (k'',e''). unfold ltk, eqk; simpl; eauto. Qed. Hint Resolve eqk_not_ltk. Hint Immediate ltk_eqk eqk_ltk. Lemma InA_eqke_eqk : forall x m, InA eqke x m -> InA eqk x m. Proof. unfold eqke; induction 1; intuition. Qed. Hint Resolve InA_eqke_eqk. Definition MapsTo (k:key)(e:elt):= InA eqke (k,e). Definition In k m := exists e:elt, MapsTo k e m. Notation Sort := (sort ltk). Notation Inf := (lelistA ltk). Hint Unfold MapsTo In. (* An alternative formulation for [In k l] is [exists e, InA eqk (k,e) l] *) Lemma In_alt : forall k l, In k l <-> exists e, InA eqk (k,e) l. Proof. firstorder. exists x; auto. induction H. destruct y. exists e; auto. destruct IHInA as [e H0]. exists e; auto. Qed. Lemma MapsTo_eq : forall l x y e, eq x y -> MapsTo x e l -> MapsTo y e l. Proof. intros; unfold MapsTo in *; apply InA_eqA with (x,e); eauto. Qed. Lemma In_eq : forall l x y, eq x y -> In x l -> In y l. Proof. destruct 2 as (e,E); exists e; eapply MapsTo_eq; eauto. Qed. Lemma Inf_eq : forall l x x', eqk x x' -> Inf x' l -> Inf x l. Proof. exact (InfA_eqA eqk_ltk). Qed. Lemma Inf_lt : forall l x x', ltk x x' -> Inf x' l -> Inf x l. Proof. exact (InfA_ltA ltk_trans). Qed. Hint Immediate Inf_eq. Hint Resolve Inf_lt. Lemma Sort_Inf_In : forall l p q, Sort l -> Inf q l -> InA eqk p l -> ltk q p. Proof. exact (SortA_InfA_InA eqk_refl eqk_sym ltk_trans ltk_eqk eqk_ltk). Qed. Lemma Sort_Inf_NotIn : forall l k e, Sort l -> Inf (k,e) l -> ~In k l. Proof. intros; red; intros. destruct H1 as [e' H2]. elim (@ltk_not_eqk (k,e) (k,e')). eapply Sort_Inf_In; eauto. red; simpl; auto. Qed. Lemma Sort_NoDupA: forall l, Sort l -> NoDupA eqk l. Proof. exact (SortA_NoDupA eqk_refl eqk_sym ltk_trans ltk_not_eqk ltk_eqk eqk_ltk). Qed. Lemma Sort_In_cons_1 : forall e l e', Sort (e::l) -> InA eqk e' l -> ltk e e'. Proof. inversion 1; intros; eapply Sort_Inf_In; eauto. Qed. Lemma Sort_In_cons_2 : forall l e e', Sort (e::l) -> InA eqk e' (e::l) -> ltk e e' \/ eqk e e'. Proof. inversion_clear 2; auto. left; apply Sort_In_cons_1 with l; auto. Qed. Lemma Sort_In_cons_3 : forall x l k e, Sort ((k,e)::l) -> In x l -> ~eq x k. Proof. inversion_clear 1; red; intros. destruct (Sort_Inf_NotIn H0 H1 (In_eq H2 H)). Qed. Lemma In_inv : forall k k' e l, In k ((k',e) :: l) -> eq k k' \/ In k l. Proof. inversion 1. inversion_clear H0; eauto. destruct H1; simpl in *; intuition. Qed. Lemma In_inv_2 : forall k k' e e' l, InA eqk (k, e) ((k', e') :: l) -> ~ eq k k' -> InA eqk (k, e) l. Proof. inversion_clear 1; compute in H0; intuition. Qed. Lemma In_inv_3 : forall x x' l, InA eqke x (x' :: l) -> ~ eqk x x' -> InA eqke x l. Proof. inversion_clear 1; compute in H0; intuition. Qed. End Elt. Hint Unfold eqk eqke ltk. Hint Extern 2 (eqke ?a ?b) => split. Hint Resolve eqk_trans eqke_trans eqk_refl eqke_refl. Hint Resolve ltk_trans ltk_not_eqk ltk_not_eqke. Hint Immediate eqk_sym eqke_sym. Hint Resolve eqk_not_ltk. Hint Immediate ltk_eqk eqk_ltk. Hint Resolve InA_eqke_eqk. Hint Unfold MapsTo In. Hint Immediate Inf_eq. Hint Resolve Inf_lt. Hint Resolve Sort_Inf_NotIn. Hint Resolve In_inv_2 In_inv_3. End KeyOrderedType.