(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* constructor; congruence. Module Properties (M: S). Module ME:=OrderedTypeFacts(M.E). Import ME. (* for ME.eq_dec *) Import M.E. Import M. Import Logic. (* to unmask [eq] *) Import Peano. (* to unmask [lt] *) (** Results about lists without duplicates *) Module FM := Facts M. Import FM. Definition Add (x : elt) (s s' : t) := forall y : elt, In y s' <-> E.eq x y \/ In y s. Lemma In_dec : forall x s, {In x s} + {~ In x s}. Proof. intros; generalize (mem_iff s x); case (mem x s); intuition. Qed. Section BasicProperties. (** properties of [Equal] *) Lemma equal_refl : forall s, s[=]s. Proof. unfold Equal; intuition. Qed. Lemma equal_sym : forall s s', s[=]s' -> s'[=]s. Proof. unfold Equal; intros. rewrite H; intuition. Qed. Lemma equal_trans : forall s1 s2 s3, s1[=]s2 -> s2[=]s3 -> s1[=]s3. Proof. unfold Equal; intros. rewrite H; exact (H0 a). Qed. Variable s s' s'' s1 s2 s3 : t. Variable x x' : elt. (** properties of [Subset] *) Lemma subset_refl : s[<=]s. Proof. unfold Subset; intuition. Qed. Lemma subset_antisym : s[<=]s' -> s'[<=]s -> s[=]s'. Proof. unfold Subset, Equal; intuition. Qed. Lemma subset_trans : s1[<=]s2 -> s2[<=]s3 -> s1[<=]s3. Proof. unfold Subset; intuition. Qed. Lemma subset_equal : s[=]s' -> s[<=]s'. Proof. unfold Subset, Equal; firstorder. Qed. Lemma subset_empty : empty[<=]s. Proof. unfold Subset; intros a; set_iff; intuition. Qed. Lemma subset_remove_3 : s1[<=]s2 -> remove x s1 [<=] s2. Proof. unfold Subset; intros H a; set_iff; intuition. Qed. Lemma subset_diff : s1[<=]s3 -> diff s1 s2 [<=] s3. Proof. unfold Subset; intros H a; set_iff; intuition. Qed. Lemma subset_add_3 : In x s2 -> s1[<=]s2 -> add x s1 [<=] s2. Proof. unfold Subset; intros H H0 a; set_iff; intuition. rewrite <- H2; auto. Qed. Lemma subset_add_2 : s1[<=]s2 -> s1[<=] add x s2. Proof. unfold Subset; intuition. Qed. Lemma in_subset : In x s1 -> s1[<=]s2 -> In x s2. Proof. unfold Subset; intuition. Qed. Lemma double_inclusion : s1[=]s2 <-> s1[<=]s2 /\ s2[<=]s1. Proof. unfold Subset, Equal; split; intros; intuition; generalize (H a); intuition. Qed. (** properties of [empty] *) Lemma empty_is_empty_1 : Empty s -> s[=]empty. Proof. unfold Empty, Equal; intros; generalize (H a); set_iff; tauto. Qed. Lemma empty_is_empty_2 : s[=]empty -> Empty s. Proof. unfold Empty, Equal; intros; generalize (H a); set_iff; tauto. Qed. (** properties of [add] *) Lemma add_equal : In x s -> add x s [=] s. Proof. unfold Equal; intros; set_iff; intuition. rewrite <- H1; auto. Qed. Lemma add_add : add x (add x' s) [=] add x' (add x s). Proof. unfold Equal; intros; set_iff; tauto. Qed. (** properties of [remove] *) Lemma remove_equal : ~ In x s -> remove x s [=] s. Proof. unfold Equal; intros; set_iff; intuition. rewrite H1 in H; auto. Qed. Lemma Equal_remove : s[=]s' -> remove x s [=] remove x s'. Proof. intros; rewrite H; apply equal_refl. Qed. (** properties of [add] and [remove] *) Lemma add_remove : In x s -> add x (remove x s) [=] s. Proof. unfold Equal; intros; set_iff; elim (eq_dec x a); intuition. rewrite <- H1; auto. Qed. Lemma remove_add : ~In x s -> remove x (add x s) [=] s. Proof. unfold Equal; intros; set_iff; elim (eq_dec x a); intuition. rewrite H1 in H; auto. Qed. (** properties of [singleton] *) Lemma singleton_equal_add : singleton x [=] add x empty. Proof. unfold Equal; intros; set_iff; intuition. Qed. (** properties of [union] *) Lemma union_sym : union s s' [=] union s' s. Proof. unfold Equal; intros; set_iff; tauto. Qed. Lemma union_subset_equal : s[<=]s' -> union s s' [=] s'. Proof. unfold Subset, Equal; intros; set_iff; intuition. Qed. Lemma union_equal_1 : s[=]s' -> union s s'' [=] union s' s''. Proof. intros; rewrite H; apply equal_refl. Qed. Lemma union_equal_2 : s'[=]s'' -> union s s' [=] union s s''. Proof. intros; rewrite H; apply equal_refl. Qed. Lemma union_assoc : union (union s s') s'' [=] union s (union s' s''). Proof. unfold Equal; intros; set_iff; tauto. Qed. Lemma add_union_singleton : add x s [=] union (singleton x) s. Proof. unfold Equal; intros; set_iff; tauto. Qed. Lemma union_add : union (add x s) s' [=] add x (union s s'). Proof. unfold Equal; intros; set_iff; tauto. Qed. Lemma union_subset_1 : s [<=] union s s'. Proof. unfold Subset; intuition. Qed. Lemma union_subset_2 : s' [<=] union s s'. Proof. unfold Subset; intuition. Qed. Lemma union_subset_3 : s[<=]s'' -> s'[<=]s'' -> union s s' [<=] s''. Proof. unfold Subset; intros H H0 a; set_iff; intuition. Qed. Lemma union_subset_4 : s[<=]s' -> union s s'' [<=] union s' s''. Proof. unfold Subset; intros H a; set_iff; intuition. Qed. Lemma union_subset_5 : s[<=]s' -> union s'' s [<=] union s'' s'. Proof. unfold Subset; intros H a; set_iff; intuition. Qed. Lemma empty_union_1 : Empty s -> union s s' [=] s'. Proof. unfold Equal, Empty; intros; set_iff; firstorder. Qed. Lemma empty_union_2 : Empty s -> union s' s [=] s'. Proof. unfold Equal, Empty; intros; set_iff; firstorder. Qed. Lemma not_in_union : ~In x s -> ~In x s' -> ~In x (union s s'). Proof. intros; set_iff; intuition. Qed. (** properties of [inter] *) Lemma inter_sym : inter s s' [=] inter s' s. Proof. unfold Equal; intros; set_iff; tauto. Qed. Lemma inter_subset_equal : s[<=]s' -> inter s s' [=] s. Proof. unfold Equal; intros; set_iff; intuition. Qed. Lemma inter_equal_1 : s[=]s' -> inter s s'' [=] inter s' s''. Proof. intros; rewrite H; apply equal_refl. Qed. Lemma inter_equal_2 : s'[=]s'' -> inter s s' [=] inter s s''. Proof. intros; rewrite H; apply equal_refl. Qed. Lemma inter_assoc : inter (inter s s') s'' [=] inter s (inter s' s''). Proof. unfold Equal; intros; set_iff; tauto. Qed. Lemma union_inter_1 : inter (union s s') s'' [=] union (inter s s'') (inter s' s''). Proof. unfold Equal; intros; set_iff; tauto. Qed. Lemma union_inter_2 : union (inter s s') s'' [=] inter (union s s'') (union s' s''). Proof. unfold Equal; intros; set_iff; tauto. Qed. Lemma inter_add_1 : In x s' -> inter (add x s) s' [=] add x (inter s s'). Proof. unfold Equal; intros; set_iff; intuition. rewrite <- H1; auto. Qed. Lemma inter_add_2 : ~ In x s' -> inter (add x s) s' [=] inter s s'. Proof. unfold Equal; intros; set_iff; intuition. destruct H; rewrite H0; auto. Qed. Lemma empty_inter_1 : Empty s -> Empty (inter s s'). Proof. unfold Empty; intros; set_iff; firstorder. Qed. Lemma empty_inter_2 : Empty s' -> Empty (inter s s'). Proof. unfold Empty; intros; set_iff; firstorder. Qed. Lemma inter_subset_1 : inter s s' [<=] s. Proof. unfold Subset; intro a; set_iff; tauto. Qed. Lemma inter_subset_2 : inter s s' [<=] s'. Proof. unfold Subset; intro a; set_iff; tauto. Qed. Lemma inter_subset_3 : s''[<=]s -> s''[<=]s' -> s''[<=] inter s s'. Proof. unfold Subset; intros H H' a; set_iff; intuition. Qed. (** properties of [diff] *) Lemma empty_diff_1 : Empty s -> Empty (diff s s'). Proof. unfold Empty, Equal; intros; set_iff; firstorder. Qed. Lemma empty_diff_2 : Empty s -> diff s' s [=] s'. Proof. unfold Empty, Equal; intros; set_iff; firstorder. Qed. Lemma diff_subset : diff s s' [<=] s. Proof. unfold Subset; intros a; set_iff; tauto. Qed. Lemma diff_subset_equal : s[<=]s' -> diff s s' [=] empty. Proof. unfold Subset, Equal; intros; set_iff; intuition; absurd (In a empty); auto. Qed. Lemma remove_diff_singleton : remove x s [=] diff s (singleton x). Proof. unfold Equal; intros; set_iff; intuition. Qed. Lemma diff_inter_empty : inter (diff s s') (inter s s') [=] empty. Proof. unfold Equal; intros; set_iff; intuition; absurd (In a empty); auto. Qed. Lemma diff_inter_all : union (diff s s') (inter s s') [=] s. Proof. unfold Equal; intros; set_iff; intuition. elim (In_dec a s'); auto. Qed. (** properties of [Add] *) Lemma Add_add : Add x s (add x s). Proof. unfold Add; intros; set_iff; intuition. Qed. Lemma Add_remove : In x s -> Add x (remove x s) s. Proof. unfold Add; intros; set_iff; intuition. elim (eq_dec x y); auto. rewrite <- H1; auto. Qed. Lemma union_Add : Add x s s' -> Add x (union s s'') (union s' s''). Proof. unfold Add; intros; set_iff; rewrite H; tauto. Qed. Lemma inter_Add : In x s'' -> Add x s s' -> Add x (inter s s'') (inter s' s''). Proof. unfold Add; intros; set_iff; rewrite H0; intuition. rewrite <- H2; auto. Qed. Lemma union_Equal : In x s'' -> Add x s s' -> union s s'' [=] union s' s''. Proof. unfold Add, Equal; intros; set_iff; rewrite H0; intuition. rewrite <- H1; auto. Qed. Lemma inter_Add_2 : ~In x s'' -> Add x s s' -> inter s s'' [=] inter s' s''. Proof. unfold Add, Equal; intros; set_iff; rewrite H0; intuition. destruct H; rewrite H1; auto. Qed. End BasicProperties. Hint Immediate equal_sym: set. Hint Resolve equal_refl equal_trans : set. Hint Immediate add_remove remove_add union_sym inter_sym: set. Hint Resolve subset_refl subset_equal subset_antisym subset_trans subset_empty subset_remove_3 subset_diff subset_add_3 subset_add_2 in_subset empty_is_empty_1 empty_is_empty_2 add_equal remove_equal singleton_equal_add union_subset_equal union_equal_1 union_equal_2 union_assoc add_union_singleton union_add union_subset_1 union_subset_2 union_subset_3 inter_subset_equal inter_equal_1 inter_equal_2 inter_assoc union_inter_1 union_inter_2 inter_add_1 inter_add_2 empty_inter_1 empty_inter_2 empty_union_1 empty_union_2 empty_diff_1 empty_diff_2 union_Add inter_Add union_Equal inter_Add_2 not_in_union inter_subset_1 inter_subset_2 inter_subset_3 diff_subset diff_subset_equal remove_diff_singleton diff_inter_empty diff_inter_all Add_add Add_remove Equal_remove add_add : set. (** * Alternative (weaker) specifications for [fold] *) Section Old_Spec_Now_Properties. Notation NoDup := (NoDupA E.eq). (** When [FSets] was first designed, the order in which Ocaml's [Set.fold] takes the set elements was unspecified. This specification reflects this fact: *) Lemma fold_0 : forall s (A : Set) (i : A) (f : elt -> A -> A), exists l : list elt, NoDup l /\ (forall x : elt, In x s <-> InA E.eq x l) /\ fold f s i = fold_right f i l. Proof. intros; exists (rev (elements s)); split. apply NoDupA_rev; auto. exact E.eq_trans. split; intros. rewrite elements_iff; do 2 rewrite InA_alt. split; destruct 1; generalize (In_rev (elements s) x0); exists x0; intuition. rewrite fold_left_rev_right. apply fold_1. Qed. (** An alternate (and previous) specification for [fold] was based on the recursive structure of a set. It is now lemmas [fold_1] and [fold_2]. *) Lemma fold_1 : forall s (A : Set) (eqA : A -> A -> Prop) (st : Setoid_Theory A eqA) (i : A) (f : elt -> A -> A), Empty s -> eqA (fold f s i) i. Proof. unfold Empty; intros; destruct (fold_0 s i f) as (l,(H1, (H2, H3))). rewrite H3; clear H3. generalize H H2; clear H H2; case l; simpl; intros. refl_st. elim (H e). elim (H2 e); intuition. Qed. Lemma fold_2 : forall s s' x (A : Set) (eqA : A -> A -> Prop) (st : Setoid_Theory A eqA) (i : A) (f : elt -> A -> A), compat_op E.eq eqA f -> transpose eqA f -> ~ In x s -> Add x s s' -> eqA (fold f s' i) (f x (fold f s i)). Proof. intros; destruct (fold_0 s i f) as (l,(Hl, (Hl1, Hl2))); destruct (fold_0 s' i f) as (l',(Hl', (Hl'1, Hl'2))). rewrite Hl2; rewrite Hl'2; clear Hl2 Hl'2. apply fold_right_add with (eqA:=E.eq)(eqB:=eqA); auto. eauto. exact eq_dec. rewrite <- Hl1; auto. intros; rewrite <- Hl1; rewrite <- Hl'1; auto. Qed. (** Similar specifications for [cardinal]. *) Lemma cardinal_fold : forall s, cardinal s = fold (fun _ => S) s 0. Proof. intros; rewrite cardinal_1; rewrite M.fold_1. symmetry; apply fold_left_length; auto. Qed. Lemma cardinal_0 : forall s, exists l : list elt, NoDupA E.eq l /\ (forall x : elt, In x s <-> InA E.eq x l) /\ cardinal s = length l. Proof. intros; exists (elements s); intuition; apply cardinal_1. Qed. Lemma cardinal_1 : forall s, Empty s -> cardinal s = 0. Proof. intros; rewrite cardinal_fold; apply fold_1; auto. Qed. Lemma cardinal_2 : forall s s' x, ~ In x s -> Add x s s' -> cardinal s' = S (cardinal s). Proof. intros; do 2 rewrite cardinal_fold. change S with ((fun _ => S) x). apply fold_2; auto. Qed. End Old_Spec_Now_Properties. (** * Induction principle over sets *) Lemma cardinal_inv_1 : forall s, cardinal s = 0 -> Empty s. Proof. intros s; rewrite M.cardinal_1; intros H a; red. rewrite elements_iff. destruct (elements s); simpl in *; discriminate || inversion 1. Qed. Hint Resolve cardinal_inv_1. Lemma cardinal_inv_2 : forall s n, cardinal s = S n -> { x : elt | In x s }. Proof. intros; rewrite M.cardinal_1 in H. generalize (elements_2 (s:=s)). destruct (elements s); try discriminate. exists e; auto. Qed. Lemma Equal_cardinal_aux : forall n s s', cardinal s = n -> s[=]s' -> cardinal s = cardinal s'. Proof. simple induction n; intros. rewrite H; symmetry . apply cardinal_1. rewrite <- H0; auto. destruct (cardinal_inv_2 H0) as (x,H2). revert H0. rewrite (cardinal_2 (s:=remove x s) (s':=s) (x:=x)); auto with set. rewrite (cardinal_2 (s:=remove x s') (s':=s') (x:=x)); auto with set. rewrite H1 in H2; auto with set. Qed. Lemma Equal_cardinal : forall s s', s[=]s' -> cardinal s = cardinal s'. Proof. intros; apply Equal_cardinal_aux with (cardinal s); auto. Qed. Add Morphism cardinal : cardinal_m. Proof. exact Equal_cardinal. Qed. Hint Resolve Add_add Add_remove Equal_remove cardinal_inv_1 Equal_cardinal. Lemma cardinal_induction : forall P : t -> Type, (forall s, Empty s -> P s) -> (forall s s', P s -> forall x, ~In x s -> Add x s s' -> P s') -> forall n s, cardinal s = n -> P s. Proof. simple induction n; intros; auto. destruct (cardinal_inv_2 H) as (x,H0). apply X0 with (remove x s) x; auto. apply X1; auto. rewrite (cardinal_2 (x:=x)(s:=remove x s)(s':=s)) in H; auto. Qed. Lemma set_induction : forall P : t -> Type, (forall s : t, Empty s -> P s) -> (forall s s' : t, P s -> forall x : elt, ~In x s -> Add x s s' -> P s') -> forall s : t, P s. Proof. intros; apply cardinal_induction with (cardinal s); auto. Qed. (** Other properties of [fold]. *) Section Fold. Variables (A:Set)(eqA:A->A->Prop)(st:Setoid_Theory _ eqA). Variables (f:elt->A->A)(Comp:compat_op E.eq eqA f)(Ass:transpose eqA f). Section Fold_1. Variable i i':A. Lemma fold_empty : eqA (fold f empty i) i. Proof. apply fold_1; auto. Qed. Lemma fold_equal : forall s s', s[=]s' -> eqA (fold f s i) (fold f s' i). Proof. intros s; pattern s; apply set_induction; clear s; intros. trans_st i. apply fold_1; auto. sym_st; apply fold_1; auto. rewrite <- H0; auto. trans_st (f x (fold f s i)). apply fold_2 with (eqA := eqA); auto. sym_st; apply fold_2 with (eqA := eqA); auto. unfold Add in *; intros. rewrite <- H2; auto. Qed. Lemma fold_add : forall s x, ~In x s -> eqA (fold f (add x s) i) (f x (fold f s i)). Proof. intros; apply fold_2 with (eqA := eqA); auto. Qed. Lemma add_fold : forall s x, In x s -> eqA (fold f (add x s) i) (fold f s i). Proof. intros; apply fold_equal; auto with set. Qed. Lemma remove_fold_1: forall s x, In x s -> eqA (f x (fold f (remove x s) i)) (fold f s i). Proof. intros. sym_st. apply fold_2 with (eqA:=eqA); auto. Qed. Lemma remove_fold_2: forall s x, ~In x s -> eqA (fold f (remove x s) i) (fold f s i). Proof. intros. apply fold_equal; auto with set. Qed. Lemma fold_commutes : forall s x, eqA (fold f s (f x i)) (f x (fold f s i)). Proof. intros; pattern s; apply set_induction; clear s; intros. trans_st (f x i). apply fold_1; auto. sym_st. apply Comp; auto. apply fold_1; auto. trans_st (f x0 (fold f s (f x i))). apply fold_2 with (eqA:=eqA); auto. trans_st (f x0 (f x (fold f s i))). trans_st (f x (f x0 (fold f s i))). apply Comp; auto. sym_st. apply fold_2 with (eqA:=eqA); auto. Qed. Lemma fold_init : forall s, eqA i i' -> eqA (fold f s i) (fold f s i'). Proof. intros; pattern s; apply set_induction; clear s; intros. trans_st i. apply fold_1; auto. trans_st i'. sym_st; apply fold_1; auto. trans_st (f x (fold f s i)). apply fold_2 with (eqA:=eqA); auto. trans_st (f x (fold f s i')). sym_st; apply fold_2 with (eqA:=eqA); auto. Qed. End Fold_1. Section Fold_2. Variable i:A. Lemma fold_union_inter : forall s s', eqA (fold f (union s s') (fold f (inter s s') i)) (fold f s (fold f s' i)). Proof. intros; pattern s; apply set_induction; clear s; intros. trans_st (fold f s' (fold f (inter s s') i)). apply fold_equal; auto with set. trans_st (fold f s' i). apply fold_init; auto. apply fold_1; auto with set. sym_st; apply fold_1; auto. rename s'0 into s''. destruct (In_dec x s'). (* In x s' *) trans_st (fold f (union s'' s') (f x (fold f (inter s s') i))); auto with set. apply fold_init; auto. apply fold_2 with (eqA:=eqA); auto with set. rewrite inter_iff; intuition. trans_st (f x (fold f s (fold f s' i))). trans_st (fold f (union s s') (f x (fold f (inter s s') i))). apply fold_equal; auto. apply equal_sym; apply union_Equal with x; auto with set. trans_st (f x (fold f (union s s') (fold f (inter s s') i))). apply fold_commutes; auto. sym_st; apply fold_2 with (eqA:=eqA); auto. (* ~(In x s') *) trans_st (f x (fold f (union s s') (fold f (inter s'' s') i))). apply fold_2 with (eqA:=eqA); auto with set. trans_st (f x (fold f (union s s') (fold f (inter s s') i))). apply Comp;auto. apply fold_init;auto. apply fold_equal;auto. apply equal_sym; apply inter_Add_2 with x; auto with set. trans_st (f x (fold f s (fold f s' i))). sym_st; apply fold_2 with (eqA:=eqA); auto. Qed. End Fold_2. Section Fold_3. Variable i:A. Lemma fold_diff_inter : forall s s', eqA (fold f (diff s s') (fold f (inter s s') i)) (fold f s i). Proof. intros. trans_st (fold f (union (diff s s') (inter s s')) (fold f (inter (diff s s') (inter s s')) i)). sym_st; apply fold_union_inter; auto. trans_st (fold f s (fold f (inter (diff s s') (inter s s')) i)). apply fold_equal; auto with set. apply fold_init; auto. apply fold_1; auto with set. Qed. Lemma fold_union: forall s s', (forall x, ~In x s\/~In x s') -> eqA (fold f (union s s') i) (fold f s (fold f s' i)). Proof. intros. trans_st (fold f (union s s') (fold f (inter s s') i)). apply fold_init; auto. sym_st; apply fold_1; auto with set. unfold Empty; intro a; generalize (H a); set_iff; tauto. apply fold_union_inter; auto. Qed. End Fold_3. End Fold. Lemma fold_plus : forall s p, fold (fun _ => S) s p = fold (fun _ => S) s 0 + p. Proof. assert (st := gen_st nat). assert (fe : compat_op E.eq (@eq _) (fun _ => S)) by (unfold compat_op; auto). assert (fp : transpose (@eq _) (fun _:elt => S)) by (unfold transpose; auto). intros s p; pattern s; apply set_induction; clear s; intros. rewrite (fold_1 st p (fun _ => S) H). rewrite (fold_1 st 0 (fun _ => S) H); trivial. assert (forall p s', Add x s s' -> fold (fun _ => S) s' p = S (fold (fun _ => S) s p)). change S with ((fun _ => S) x). intros; apply fold_2; auto. rewrite H2; auto. rewrite (H2 0); auto. rewrite H. simpl; auto. Qed. (** properties of [cardinal] *) Lemma empty_cardinal : cardinal empty = 0. Proof. rewrite cardinal_fold; apply fold_1; auto. Qed. Hint Immediate empty_cardinal cardinal_1 : set. Lemma singleton_cardinal : forall x, cardinal (singleton x) = 1. Proof. intros. rewrite (singleton_equal_add x). replace 0 with (cardinal empty); auto with set. apply cardinal_2 with x; auto with set. Qed. Hint Resolve singleton_cardinal: set. Lemma diff_inter_cardinal : forall s s', cardinal (diff s s') + cardinal (inter s s') = cardinal s . Proof. intros; do 3 rewrite cardinal_fold. rewrite <- fold_plus. apply fold_diff_inter with (eqA:=@eq nat); auto. Qed. Lemma union_cardinal: forall s s', (forall x, ~In x s\/~In x s') -> cardinal (union s s')=cardinal s+cardinal s'. Proof. intros; do 3 rewrite cardinal_fold. rewrite <- fold_plus. apply fold_union; auto. Qed. Lemma subset_cardinal : forall s s', s[<=]s' -> cardinal s <= cardinal s' . Proof. intros. rewrite <- (diff_inter_cardinal s' s). rewrite (inter_sym s' s). rewrite (inter_subset_equal H); auto with arith. Qed. Lemma subset_cardinal_lt : forall s s' x, s[<=]s' -> In x s' -> ~In x s -> cardinal s < cardinal s'. Proof. intros. rewrite <- (diff_inter_cardinal s' s). rewrite (inter_sym s' s). rewrite (inter_subset_equal H). generalize (@cardinal_inv_1 (diff s' s)). destruct (cardinal (diff s' s)). intro H2; destruct (H2 (refl_equal _) x). set_iff; auto. intros _. change (0 + cardinal s < S n + cardinal s). apply Plus.plus_lt_le_compat; auto with arith. Qed. Theorem union_inter_cardinal : forall s s', cardinal (union s s') + cardinal (inter s s') = cardinal s + cardinal s' . Proof. intros. do 4 rewrite cardinal_fold. do 2 rewrite <- fold_plus. apply fold_union_inter with (eqA:=@eq nat); auto. Qed. Lemma union_cardinal_inter : forall s s', cardinal (union s s') = cardinal s + cardinal s' - cardinal (inter s s'). Proof. intros. rewrite <- union_inter_cardinal. rewrite Plus.plus_comm. auto with arith. Qed. Lemma union_cardinal_le : forall s s', cardinal (union s s') <= cardinal s + cardinal s'. Proof. intros; generalize (union_inter_cardinal s s'). intros; rewrite <- H; auto with arith. Qed. Lemma add_cardinal_1 : forall s x, In x s -> cardinal (add x s) = cardinal s. Proof. auto with set. Qed. Lemma add_cardinal_2 : forall s x, ~In x s -> cardinal (add x s) = S (cardinal s). Proof. intros. do 2 rewrite cardinal_fold. change S with ((fun _ => S) x); apply fold_add with (eqA:=@eq nat); auto. Qed. Lemma remove_cardinal_1 : forall s x, In x s -> S (cardinal (remove x s)) = cardinal s. Proof. intros. do 2 rewrite cardinal_fold. change S with ((fun _ =>S) x). apply remove_fold_1 with (eqA:=@eq nat); auto. Qed. Lemma remove_cardinal_2 : forall s x, ~In x s -> cardinal (remove x s) = cardinal s. Proof. auto with set. Qed. Hint Resolve subset_cardinal union_cardinal add_cardinal_1 add_cardinal_2. End Properties.