(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* Prop := | RBLeaf : avl Leaf | RBNode : forall x l r h, avl l -> avl r -> -(2) <= height l - height r <= 2 -> h = max (height l) (height r) + 1 -> avl (Node l x r h). (** * Automation and dedicated tactics *) Hint Constructors avl. (** A tactic for cleaning hypothesis after use of functional induction. *) Ltac clearf := match goal with | H : (@Logic.eq (Compare _ _ _ _) _ _) |- _ => clear H; clearf | H : (@Logic.eq (sumbool _ _) _ _) |- _ => clear H; clearf | _ => idtac end. (** Tactics about [avl] *) Lemma height_non_negative : forall s : tree, avl s -> height s >= 0. Proof. induction s; simpl; intros; auto with zarith. inv avl; intuition; omega_max. Qed. Implicit Arguments height_non_negative. (** When [H:avl r], typing [avl_nn H] or [avl_nn r] adds [height r>=0] *) Ltac avl_nn_hyp H := let nz := fresh "nz" in assert (nz := height_non_negative H). Ltac avl_nn h := let t := type of h in match type of t with | Prop => avl_nn_hyp h | _ => match goal with H : avl h |- _ => avl_nn_hyp H end end. (* Repeat the previous tactic. Drawback: need to clear the [avl _] hyps ... Thank you Ltac *) Ltac avl_nns := match goal with | H:avl _ |- _ => avl_nn_hyp H; clear H; avl_nns | _ => idtac end. (** Results about [height] *) Lemma height_0 : forall s, avl s -> height s = 0 -> s = Leaf. Proof. destruct 1; intuition; simpl in *. avl_nns; simpl in *; elimtype False; omega_max. Qed. (** * Results about [avl] *) Lemma avl_node : forall x l r, avl l -> avl r -> -(2) <= height l - height r <= 2 -> avl (Node l x r (max (height l) (height r) + 1)). Proof. intros; auto. Qed. Hint Resolve avl_node. (** empty *) Lemma empty_avl : avl empty. Proof. auto. Qed. (** singleton *) Lemma singleton_avl : forall x : elt, avl (singleton x). Proof. unfold singleton; intro. constructor; auto; try red; simpl; omega_max. Qed. (** create *) Lemma create_avl : forall l x r, avl l -> avl r -> -(2) <= height l - height r <= 2 -> avl (create l x r). Proof. unfold create; auto. Qed. Lemma create_height : forall l x r, avl l -> avl r -> -(2) <= height l - height r <= 2 -> height (create l x r) = max (height l) (height r) + 1. Proof. unfold create; auto. Qed. (** bal *) Lemma bal_avl : forall l x r, avl l -> avl r -> -(3) <= height l - height r <= 3 -> avl (bal l x r). Proof. intros l x r; functional induction bal l x r; intros; clearf; inv avl; simpl in *; match goal with |- avl (assert_false _ _ _) => avl_nns | _ => repeat apply create_avl; simpl in *; auto end; omega_max. Qed. Lemma bal_height_1 : forall l x r, avl l -> avl r -> -(3) <= height l - height r <= 3 -> 0 <= height (bal l x r) - max (height l) (height r) <= 1. Proof. intros l x r; functional induction bal l x r; intros; clearf; inv avl; avl_nns; simpl in *; omega_max. Qed. Lemma bal_height_2 : forall l x r, avl l -> avl r -> -(2) <= height l - height r <= 2 -> height (bal l x r) == max (height l) (height r) +1. Proof. intros l x r; functional induction bal l x r; intros; clearf; inv avl; simpl in *; omega_max. Qed. Ltac omega_bal := match goal with | H:avl ?l, H':avl ?r |- context [ bal ?l ?x ?r ] => generalize (bal_height_1 x H H') (bal_height_2 x H H'); omega_max end. (** add *) Lemma add_avl_1 : forall s x, avl s -> avl (add x s) /\ 0 <= height (add x s) - height s <= 1. Proof. intros s x; functional induction (add x s); subst;intros; inv avl; simpl in *. intuition; try constructor; simpl; auto; try omega_max. (* LT *) destruct IHt; auto. split. apply bal_avl; auto; omega_max. omega_bal. (* EQ *) intuition; omega_max. (* GT *) destruct IHt; auto. split. apply bal_avl; auto; omega_max. omega_bal. Qed. Lemma add_avl : forall s x, avl s -> avl (add x s). Proof. intros; destruct (add_avl_1 x H); auto. Qed. Hint Resolve add_avl. (** join *) Lemma join_avl_1 : forall l x r, avl l -> avl r -> avl (join l x r) /\ 0<= height (join l x r) - max (height l) (height r) <= 1. Proof. join_tac. split; simpl; auto. destruct (add_avl_1 x H0). avl_nns; omega_max. set (l:=Node ll lx lr lh) in *. split; auto. destruct (add_avl_1 x H). simpl (height Leaf). avl_nns; omega_max. inversion_clear H. assert (height (Node rl rx rr rh) = rh); auto. set (r := Node rl rx rr rh) in *; clearbody r. destruct (Hlr x r H2 H0); clear Hrl Hlr. set (j := join lr x r) in *; clearbody j. simpl. assert (-(3) <= height ll - height j <= 3) by omega_max. split. apply bal_avl; auto. omega_bal. inversion_clear H0. assert (height (Node ll lx lr lh) = lh); auto. set (l := Node ll lx lr lh) in *; clearbody l. destruct (Hrl H H1); clear Hrl Hlr. set (j := join l x rl) in *; clearbody j. simpl. assert (-(3) <= height j - height rr <= 3) by omega_max. split. apply bal_avl; auto. omega_bal. clear Hrl Hlr. assert (height (Node ll lx lr lh) = lh); auto. assert (height (Node rl rx rr rh) = rh); auto. set (l := Node ll lx lr lh) in *; clearbody l. set (r := Node rl rx rr rh) in *; clearbody r. assert (-(2) <= height l - height r <= 2) by omega_max. split. apply create_avl; auto. rewrite create_height; auto; omega_max. Qed. Lemma join_avl : forall l x r, avl l -> avl r -> avl (join l x r). Proof. intros; destruct (join_avl_1 x H H0); auto. Qed. Hint Resolve join_avl. (** remove_min *) Lemma remove_min_avl_1 : forall l x r h, avl (Node l x r h) -> avl (remove_min l x r)#1 /\ 0 <= height (Node l x r h) - height (remove_min l x r)#1 <= 1. Proof. intros l x r; functional induction (remove_min l x r); subst;simpl in *; intros. inv avl; simpl in *; split; auto. avl_nns; omega_max. inversion_clear H. rewrite e0 in IHp;simpl in IHp;destruct (IHp _x); auto. split; simpl in *. apply bal_avl; auto; omega_max. omega_bal. Qed. Lemma remove_min_avl : forall l x r h, avl (Node l x r h) -> avl (remove_min l x r)#1. Proof. intros; destruct (remove_min_avl_1 H); auto. Qed. (** merge *) Lemma merge_avl_1 : forall s1 s2, avl s1 -> avl s2 -> -(2) <= height s1 - height s2 <= 2 -> avl (merge s1 s2) /\ 0<= height (merge s1 s2) - max (height s1) (height s2) <=1. Proof. intros s1 s2; functional induction (merge s1 s2); intros; try factornode _x _x0 _x1 _x2 as s1. simpl; split; auto; avl_nns; omega_max. simpl; split; auto; avl_nns; simpl in *; omega_max. generalize (remove_min_avl_1 H0). rewrite e1; destruct 1. split. apply bal_avl; auto. simpl; omega_max. simpl in *; omega_bal. Qed. Lemma merge_avl : forall s1 s2, avl s1 -> avl s2 -> -(2) <= height s1 - height s2 <= 2 -> avl (merge s1 s2). Proof. intros; destruct (merge_avl_1 H H0 H1); auto. Qed. (** remove *) Lemma remove_avl_1 : forall s x, avl s -> avl (remove x s) /\ 0 <= height s - height (remove x s) <= 1. Proof. intros s x; functional induction (remove x s); intros. intuition; omega_max. (* LT *) inv avl. destruct (IHt H0). split. apply bal_avl; auto. omega_max. omega_bal. (* EQ *) inv avl. generalize (merge_avl_1 H0 H1 H2). intuition omega_max. (* GT *) inv avl. destruct (IHt H1). split. apply bal_avl; auto. omega_max. omega_bal. Qed. Lemma remove_avl : forall s x, avl s -> avl (remove x s). Proof. intros; destruct (remove_avl_1 x H); auto. Qed. Hint Resolve remove_avl. (** concat *) Lemma concat_avl : forall s1 s2, avl s1 -> avl s2 -> avl (concat s1 s2). Proof. intros s1 s2; functional induction (concat s1 s2); auto. intros; apply join_avl; auto. generalize (remove_min_avl H0); rewrite e1; simpl; auto. Qed. Hint Resolve concat_avl. (** split *) Lemma split_avl : forall s x, avl s -> avl (split x s)#l /\ avl (split x s)#r. Proof. intros s x; functional induction (split x s); simpl; auto. rewrite e1 in IHt;simpl in IHt;inversion_clear 1; intuition. simpl; inversion_clear 1; auto. rewrite e1 in IHt;simpl in IHt;inversion_clear 1; intuition. Qed. (** inter *) Lemma inter_avl : forall s1 s2, avl s1 -> avl s2 -> avl (inter s1 s2). Proof. intros s1 s2; functional induction inter s1 s2; auto; intros A1 A2; generalize (split_avl x1 A2); rewrite e1; simpl; destruct 1; inv avl; auto. Qed. (** diff *) Lemma diff_avl : forall s1 s2, avl s1 -> avl s2 -> avl (diff s1 s2). Proof. intros s1 s2; functional induction diff s1 s2; auto; intros A1 A2; generalize (split_avl x1 A2); rewrite e1; simpl; destruct 1; inv avl; auto. Qed. (** union *) Lemma union_avl : forall s1 s2, avl s1 -> avl s2 -> avl (union s1 s2). Proof. intros s1 s2; functional induction union s1 s2; auto; intros A1 A2; generalize (split_avl x1 A2); rewrite e1; simpl; destruct 1; inv avl; auto. Qed. (** filter *) Lemma filter_acc_avl : forall f s acc, avl s -> avl acc -> avl (filter_acc f acc s). Proof. induction s; simpl; auto. intros. inv avl. destruct (f t); auto. Qed. Hint Resolve filter_acc_avl. Lemma filter_avl : forall f s, avl s -> avl (filter f s). Proof. unfold filter; intros; apply filter_acc_avl; auto. Qed. (** partition *) Lemma partition_acc_avl_1 : forall f s acc, avl s -> avl acc#1 -> avl (partition_acc f acc s)#1. Proof. induction s; simpl; auto. destruct acc as [acct accf]; simpl in *. intros. inv avl. apply IHs2; auto. apply IHs1; auto. destruct (f t); simpl; auto. Qed. Lemma partition_acc_avl_2 : forall f s acc, avl s -> avl acc#2 -> avl (partition_acc f acc s)#2. Proof. induction s; simpl; auto. destruct acc as [acct accf]; simpl in *. intros. inv avl. apply IHs2; auto. apply IHs1; auto. destruct (f t); simpl; auto. Qed. Lemma partition_avl_1 : forall f s, avl s -> avl (partition f s)#1. Proof. unfold partition; intros; apply partition_acc_avl_1; auto. Qed. Lemma partition_avl_2 : forall f s, avl s -> avl (partition f s)#2. Proof. unfold partition; intros; apply partition_acc_avl_2; auto. Qed. End AvlProofs. Module OcamlOps (Import I:Int)(X:OrderedType). Module Import AvlProofs := AvlProofs I X. Import Raw. Import Raw.Proofs. Import II. Open Local Scope pair_scope. Open Local Scope nat_scope. (** Properties of cardinal *) Lemma bal_cardinal : forall l x r, cardinal (bal l x r) = S (cardinal l + cardinal r). Proof. intros l x r; functional induction bal l x r; intros; clearf; simpl; auto with arith; romega with *. Qed. Lemma add_cardinal : forall x s, cardinal (add x s) <= S (cardinal s). Proof. intros; functional induction add x s; simpl; auto with arith; rewrite bal_cardinal; romega with *. Qed. Lemma join_cardinal : forall l x r, cardinal (join l x r) <= S (cardinal l + cardinal r). Proof. join_tac; auto with arith. simpl; apply add_cardinal. simpl; destruct X.compare; simpl; auto with arith. generalize (bal_cardinal (add x ll) lx lr) (add_cardinal x ll); romega with *. generalize (bal_cardinal ll lx (add x lr)) (add_cardinal x lr); romega with *. generalize (bal_cardinal ll lx (join lr x (Node rl rx rr rh))) (Hlr x (Node rl rx rr rh)); simpl; romega with *. simpl S in *; generalize (bal_cardinal (join (Node ll lx lr lh) x rl) rx rr). romega with *. Qed. Lemma split_cardinal_1 : forall x s, (cardinal (split x s)#l <= cardinal s)%nat. Proof. intros x s; functional induction split x s; simpl; auto. rewrite e1 in IHt; simpl in *. romega with *. romega with *. rewrite e1 in IHt; simpl in *. generalize (@join_cardinal l y rl); romega with *. Qed. Lemma split_cardinal_2 : forall x s, (cardinal (split x s)#r <= cardinal s)%nat. Proof. intros x s; functional induction split x s; simpl; auto. rewrite e1 in IHt; simpl in *. generalize (@join_cardinal rl y r); romega with *. romega with *. rewrite e1 in IHt; simpl in *; romega with *. Qed. (** * [ocaml_union], an union faithful to the original ocaml code *) Definition cardinal2 (s:t*t) := (cardinal s#1 + cardinal s#2)%nat. Ltac ocaml_union_tac := intros; unfold cardinal2; simpl fst in *; simpl snd in *; match goal with H: split ?x ?s = _ |- _ => generalize (split_cardinal_1 x s) (split_cardinal_2 x s); rewrite H; simpl; romega with * end. Import Logic. (* Unhide eq, otherwise Function complains. *) Function ocaml_union (s : t * t) { measure cardinal2 s } : t := match s with | (Leaf, Leaf) => s#2 | (Leaf, Node _ _ _ _) => s#2 | (Node _ _ _ _, Leaf) => s#1 | (Node l1 x1 r1 h1, Node l2 x2 r2 h2) => if ge_lt_dec h1 h2 then if eq_dec h2 1%I then add x2 s#1 else let (l2',_,r2') := split x1 s#2 in join (ocaml_union (l1,l2')) x1 (ocaml_union (r1,r2')) else if eq_dec h1 1%I then add x1 s#2 else let (l1',_,r1') := split x2 s#1 in join (ocaml_union (l1',l2)) x2 (ocaml_union (r1',r2)) end. Proof. abstract ocaml_union_tac. abstract ocaml_union_tac. abstract ocaml_union_tac. abstract ocaml_union_tac. Defined. Lemma ocaml_union_in : forall s y, bst s#1 -> avl s#1 -> bst s#2 -> avl s#2 -> (In y (ocaml_union s) <-> In y s#1 \/ In y s#2). Proof. intros s; functional induction ocaml_union s; intros y B1 A1 B2 A2; simpl fst in *; simpl snd in *; try clear e0 e1. intuition_in. intuition_in. intuition_in. (* add x2 s#1 *) inv avl. rewrite (height_0 H); [ | avl_nn l2; omega_max]. rewrite (height_0 H0); [ | avl_nn r2; omega_max]. rewrite add_in; intuition_in. (* join (union (l1,l2')) x1 (union (r1,r2')) *) generalize (split_avl x1 A2) (split_bst x1 B2) (split_in_1 x1 y B2) (split_in_2 x1 y B2). rewrite e2; simpl. destruct 1; destruct 1; inv avl; inv bst. rewrite join_in, IHt, IHt0; auto. do 2 (intro Eq; rewrite Eq; clear Eq). case (X.compare y x1); intuition_in. (* add x1 s#2 *) inv avl. rewrite (height_0 H3); [ | avl_nn l1; omega_max]. rewrite (height_0 H4); [ | avl_nn r1; omega_max]. rewrite add_in; auto; intuition_in. (* join (union (l1',l2)) x1 (union (r1',r2)) *) generalize (split_avl x2 A1) (split_bst x2 B1) (split_in_1 x2 y B1) (split_in_2 x2 y B1). rewrite e2; simpl. destruct 1; destruct 1; inv avl; inv bst. rewrite join_in, IHt, IHt0; auto. do 2 (intro Eq; rewrite Eq; clear Eq). case (X.compare y x2); intuition_in. Qed. Lemma ocaml_union_bst : forall s, bst s#1 -> avl s#1 -> bst s#2 -> avl s#2 -> bst (ocaml_union s). Proof. intros s; functional induction ocaml_union s; intros B1 A1 B2 A2; simpl fst in *; simpl snd in *; try clear e0 e1; try apply add_bst; auto. (* join (union (l1,l2')) x1 (union (r1,r2')) *) clear _x _x0; factornode l2 x2 r2 h2 as s2. generalize (split_avl x1 A2) (split_bst x1 B2) (@split_in_1 s2 x1)(@split_in_2 s2 x1). rewrite e2; simpl. destruct 1; destruct 1; intros. inv bst; inv avl. apply join_bst; auto. intro y; rewrite ocaml_union_in, H3; intuition_in. intro y; rewrite ocaml_union_in, H4; intuition_in. (* join (union (l1',l2)) x1 (union (r1',r2)) *) clear _x _x0; factornode l1 x1 r1 h1 as s1. generalize (split_avl x2 A1) (split_bst x2 B1) (@split_in_1 s1 x2)(@split_in_2 s1 x2). rewrite e2; simpl. destruct 1; destruct 1; intros. inv bst; inv avl. apply join_bst; auto. intro y; rewrite ocaml_union_in, H3; intuition_in. intro y; rewrite ocaml_union_in, H4; intuition_in. Qed. Lemma ocaml_union_avl : forall s, avl s#1 -> avl s#2 -> avl (ocaml_union s). Proof. intros s; functional induction ocaml_union s; simpl fst in *; simpl snd in *; auto. intros A1 A2; generalize (split_avl x1 A2); rewrite e2; simpl. inv avl; destruct 1; auto. intros A1 A2; generalize (split_avl x2 A1); rewrite e2; simpl. inv avl; destruct 1; auto. Qed. Lemma ocaml_union_alt : forall s, bst s#1 -> avl s#1 -> bst s#2 -> avl s#2 -> Equal (ocaml_union s) (union s#1 s#2). Proof. red; intros; rewrite ocaml_union_in, union_in; simpl; intuition. Qed. (** * [ocaml_subset], a subset faithful to the original ocaml code *) Function ocaml_subset (s:t*t) { measure cardinal2 s } : bool := match s with | (Leaf, _) => true | (Node _ _ _ _, Leaf) => false | (Node l1 x1 r1 h1, Node l2 x2 r2 h2) => match X.compare x1 x2 with | EQ _ => ocaml_subset (l1,l2) && ocaml_subset (r1,r2) | LT _ => ocaml_subset (Node l1 x1 Leaf 0%I, l2) && ocaml_subset (r1,s#2) | GT _ => ocaml_subset (Node Leaf x1 r1 0%I, r2) && ocaml_subset (l1,s#2) end end. Proof. intros; unfold cardinal2; simpl; abstract romega with *. intros; unfold cardinal2; simpl; abstract romega with *. intros; unfold cardinal2; simpl; abstract romega with *. intros; unfold cardinal2; simpl; abstract romega with *. intros; unfold cardinal2; simpl; abstract romega with *. intros; unfold cardinal2; simpl; abstract romega with *. Defined. Lemma ocaml_subset_12 : forall s, bst s#1 -> bst s#2 -> (ocaml_subset s = true <-> Subset s#1 s#2). Proof. intros s; functional induction ocaml_subset s; simpl; intros B1 B2; try clear e0. intuition. red; auto; inversion 1. split; intros; try discriminate. assert (H': In _x0 Leaf) by auto; inversion H'. (**) simpl in *; inv bst. rewrite andb_true_iff, IHb, IHb0; auto; clear IHb IHb0. unfold Subset; intuition_in. assert (X.eq a x2) by order; intuition_in. assert (In a (Node l2 x2 r2 h2)) by auto; intuition_in; order. assert (In a (Node l2 x2 r2 h2)) by auto; intuition_in; order. (**) simpl in *; inv bst. rewrite andb_true_iff, IHb, IHb0; auto; clear IHb IHb0. unfold Subset; intuition_in. assert (In a (Node l2 x2 r2 h2)) by auto; intuition_in; order. assert (In a (Node l2 x2 r2 h2)) by auto; intuition_in; order. (**) simpl in *; inv bst. rewrite andb_true_iff, IHb, IHb0; auto; clear IHb IHb0. unfold Subset; intuition_in. assert (In a (Node l2 x2 r2 h2)) by auto; intuition_in; order. assert (In a (Node l2 x2 r2 h2)) by auto; intuition_in; order. Qed. Lemma ocaml_subset_alt : forall s, bst s#1 -> bst s#2 -> ocaml_subset s = subset s#1 s#2. Proof. intros. generalize (ocaml_subset_12 H H0); rewrite <-subset_12 by auto. destruct ocaml_subset; destruct subset; intuition. Qed. (** [ocaml_compare], a compare faithful to the original ocaml code *) (** termination of [compare_aux] *) Fixpoint cardinal_e e := match e with | End => 0 | More _ s r => S (cardinal s + cardinal_e r) end. Lemma cons_cardinal_e : forall s e, cardinal_e (cons s e) = cardinal s + cardinal_e e. Proof. induction s; simpl; intros; auto. rewrite IHs1; simpl; rewrite <- plus_n_Sm; auto with arith. Qed. Definition cardinal_e_2 e := cardinal_e e#1 + cardinal_e e#2. Function ocaml_compare_aux (e:enumeration*enumeration) { measure cardinal_e_2 e } : comparison := match e with | (End,End) => Eq | (End,More _ _ _) => Lt | (More _ _ _, End) => Gt | (More x1 r1 e1, More x2 r2 e2) => match X.compare x1 x2 with | EQ _ => ocaml_compare_aux (cons r1 e1, cons r2 e2) | LT _ => Lt | GT _ => Gt end end. Proof. intros; unfold cardinal_e_2; simpl; abstract (do 2 rewrite cons_cardinal_e; romega with *). Defined. Definition ocaml_compare s1 s2 := ocaml_compare_aux (cons s1 End, cons s2 End). Lemma ocaml_compare_aux_Cmp : forall e, Cmp (ocaml_compare_aux e) (flatten_e e#1) (flatten_e e#2). Proof. intros e; functional induction ocaml_compare_aux e; simpl; intros; auto; try discriminate. apply L.eq_refl. simpl in *. apply cons_Cmp; auto. rewrite <- 2 cons_1; auto. Qed. Lemma ocaml_compare_Cmp : forall s1 s2, Cmp (ocaml_compare s1 s2) (elements s1) (elements s2). Proof. unfold ocaml_compare; intros. assert (H1:=cons_1 s1 End). assert (H2:=cons_1 s2 End). simpl in *; rewrite <- app_nil_end in *; rewrite <-H1,<-H2. apply (@ocaml_compare_aux_Cmp (cons s1 End, cons s2 End)). Qed. Lemma ocaml_compare_alt : forall s1 s2, bst s1 -> bst s2 -> ocaml_compare s1 s2 = compare s1 s2. Proof. intros s1 s2 B1 B2. generalize (ocaml_compare_Cmp s1 s2)(compare_Cmp s1 s2). unfold Cmp. destruct ocaml_compare; destruct compare; auto; intros; elimtype False. elim (lt_not_eq B1 B2 H0); auto. elim (lt_not_eq B2 B1 H0); auto. apply eq_sym; auto. elim (lt_not_eq B1 B2 H); auto. elim (lt_not_eq B1 B1). red; eapply L.lt_trans; eauto. apply eq_refl. elim (lt_not_eq B2 B1 H); auto. apply eq_sym; auto. elim (lt_not_eq B1 B2 H0); auto. elim (lt_not_eq B1 B1). red; eapply L.lt_trans; eauto. apply eq_refl. Qed. (** * Equality test *) Definition ocaml_equal s1 s2 : bool := match ocaml_compare s1 s2 with | Eq => true | _ => false end. Lemma ocaml_equal_1 : forall s1 s2, bst s1 -> bst s2 -> Equal s1 s2 -> ocaml_equal s1 s2 = true. Proof. unfold ocaml_equal; intros s1 s2 B1 B2 E. generalize (ocaml_compare_Cmp s1 s2). destruct (ocaml_compare s1 s2); auto; intros. elim (lt_not_eq B1 B2 H E); auto. elim (lt_not_eq B2 B1 H (eq_sym E)); auto. Qed. Lemma ocaml_equal_2 : forall s1 s2, ocaml_equal s1 s2 = true -> Equal s1 s2. Proof. unfold ocaml_equal; intros s1 s2 E. generalize (ocaml_compare_Cmp s1 s2); destruct ocaml_compare; auto; discriminate. Qed. Lemma ocaml_equal_alt : forall s1 s2, bst s1 -> bst s2 -> ocaml_equal s1 s2 = equal s1 s2. Proof. intros; unfold ocaml_equal, equal; rewrite ocaml_compare_alt; auto. Qed. End OcamlOps. (** * Encapsulation We can implement [S] with balanced binary search trees. When compared to [FSetAVL], we maintain here two invariants (bst and avl) instead of only bst, which is enough for fulfilling the FSet interface. This encapsulation propose the non-structural variants [ocaml_union], [ocaml_subset], [ocaml_compare], [ocaml_equal]. *) Module IntMake (I:Int)(X: OrderedType) <: S with Module E := X. Module E := X. Module Import OcamlOps := OcamlOps I X. Import AvlProofs. Import Raw. Import Raw.Proofs. Record bbst := Bbst {this :> Raw.t; is_bst : bst this; is_avl : avl this}. Definition t := bbst. Definition elt := E.t. Definition In (x : elt) (s : t) : Prop := In x s. Definition Equal (s s':t) : Prop := forall a : elt, In a s <-> In a s'. Definition Subset (s s':t) : Prop := forall a : elt, In a s -> In a s'. Definition Empty (s:t) : Prop := forall a : elt, ~ In a s. Definition For_all (P : elt -> Prop) (s:t) : Prop := forall x, In x s -> P x. Definition Exists (P : elt -> Prop) (s:t) : Prop := exists x, In x s /\ P x. Lemma In_1 : forall (s:t)(x y:elt), E.eq x y -> In x s -> In y s. Proof. intro s; exact (@In_1 s). Qed. Definition mem (x:elt)(s:t) : bool := mem x s. Definition empty : t := Bbst empty_bst empty_avl. Definition is_empty (s:t) : bool := is_empty s. Definition singleton (x:elt) : t := Bbst (singleton_bst x) (singleton_avl x). Definition add (x:elt)(s:t) : t := Bbst (add_bst x (is_bst s)) (add_avl x (is_avl s)). Definition remove (x:elt)(s:t) : t := Bbst (remove_bst x (is_bst s)) (remove_avl x (is_avl s)). Definition inter (s s':t) : t := Bbst (inter_bst (is_bst s) (is_bst s')) (inter_avl (is_avl s) (is_avl s')). Definition union (s s':t) : t := Bbst (union_bst (is_bst s) (is_bst s')) (union_avl (is_avl s) (is_avl s')). Definition ocaml_union (s s':t) : t := Bbst (@ocaml_union_bst (s.(this),s'.(this)) (is_bst s) (is_avl s) (is_bst s') (is_avl s')) (@ocaml_union_avl (s.(this),s'.(this)) (is_avl s) (is_avl s')). Definition diff (s s':t) : t := Bbst (diff_bst (is_bst s) (is_bst s')) (diff_avl (is_avl s) (is_avl s')). Definition elements (s:t) : list elt := elements s. Definition min_elt (s:t) : option elt := min_elt s. Definition max_elt (s:t) : option elt := max_elt s. Definition choose (s:t) : option elt := choose s. Definition fold (B : Type) (f : elt -> B -> B) (s:t) : B -> B := fold f s. Definition cardinal (s:t) : nat := cardinal s. Definition filter (f : elt -> bool) (s:t) : t := Bbst (filter_bst f (is_bst s)) (filter_avl f (is_avl s)). Definition for_all (f : elt -> bool) (s:t) : bool := for_all f s. Definition exists_ (f : elt -> bool) (s:t) : bool := exists_ f s. Definition partition (f : elt -> bool) (s:t) : t * t := let p := partition f s in (@Bbst (fst p) (partition_bst_1 f (is_bst s)) (partition_avl_1 f (is_avl s)), @Bbst (snd p) (partition_bst_2 f (is_bst s)) (partition_avl_2 f (is_avl s))). Definition equal (s s':t) : bool := equal s s'. Definition ocaml_equal (s s':t) : bool := ocaml_equal s s'. Definition subset (s s':t) : bool := subset s s'. Definition ocaml_subset (s s':t) : bool := ocaml_subset (s.(this),s'.(this)). Definition eq (s s':t) : Prop := Equal s s'. Definition lt (s s':t) : Prop := lt s s'. Definition compare (s s':t) : Compare lt eq s s'. Proof. intros (s,b,a) (s',b',a'). generalize (compare_Cmp s s'). destruct Raw.compare; intros; [apply EQ|apply LT|apply GT]; red; auto. change (Raw.Equal s s'); auto. Defined. Definition ocaml_compare (s s':t) : Compare lt eq s s'. Proof. intros (s,b,a) (s',b',a'). generalize (ocaml_compare_Cmp s s'). destruct ocaml_compare; intros; [apply EQ|apply LT|apply GT]; red; auto. change (Raw.Equal s s'); auto. Defined. Definition eq_dec (s s':t) : { eq s s' } + { ~ eq s s' }. Proof. intros (s,b,a) (s',b',a'); unfold eq; simpl. case_eq (Raw.equal s s'); intro H; [left|right]. apply equal_2; auto. intro H'; rewrite equal_1 in H; auto; discriminate. Defined. (* specs *) Section Specs. Variable s s' s'': t. Variable x y : elt. Hint Resolve is_bst is_avl. Lemma mem_1 : In x s -> mem x s = true. Proof. exact (mem_1 (is_bst s)). Qed. Lemma mem_2 : mem x s = true -> In x s. Proof. exact (@mem_2 s x). Qed. Lemma equal_1 : Equal s s' -> equal s s' = true. Proof. exact (equal_1 (is_bst s) (is_bst s')). Qed. Lemma equal_2 : equal s s' = true -> Equal s s'. Proof. exact (@equal_2 s s'). Qed. Lemma ocaml_equal_alt : ocaml_equal s s' = equal s s'. Proof. destruct s; destruct s'; unfold ocaml_equal, equal; simpl. apply ocaml_equal_alt; auto. Qed. Lemma ocaml_equal_1 : Equal s s' -> ocaml_equal s s' = true. Proof. exact (ocaml_equal_1 (is_bst s) (is_bst s')). Qed. Lemma ocaml_equal_2 : ocaml_equal s s' = true -> Equal s s'. Proof. exact (@ocaml_equal_2 s s'). Qed. Ltac wrap t H := unfold t, In; simpl; rewrite H; auto; intuition. Lemma subset_1 : Subset s s' -> subset s s' = true. Proof. wrap subset subset_12. Qed. Lemma subset_2 : subset s s' = true -> Subset s s'. Proof. wrap subset subset_12. Qed. Lemma ocaml_subset_alt : ocaml_subset s s' = subset s s'. Proof. destruct s; destruct s'; unfold ocaml_subset, subset; simpl. rewrite ocaml_subset_alt; auto. Qed. Lemma ocaml_subset_1 : Subset s s' -> ocaml_subset s s' = true. Proof. wrap ocaml_subset ocaml_subset_12; simpl; auto. Qed. Lemma ocaml_subset_2 : ocaml_subset s s' = true -> Subset s s'. Proof. wrap ocaml_subset ocaml_subset_12; simpl; auto. Qed. Lemma empty_1 : Empty empty. Proof. exact empty_1. Qed. Lemma is_empty_1 : Empty s -> is_empty s = true. Proof. exact (@is_empty_1 s). Qed. Lemma is_empty_2 : is_empty s = true -> Empty s. Proof. exact (@is_empty_2 s). Qed. Lemma add_1 : E.eq x y -> In y (add x s). Proof. wrap add add_in. Qed. Lemma add_2 : In y s -> In y (add x s). Proof. wrap add add_in. Qed. Lemma add_3 : ~ E.eq x y -> In y (add x s) -> In y s. Proof. wrap add add_in. elim H; auto. Qed. Lemma remove_1 : E.eq x y -> ~ In y (remove x s). Proof. wrap remove remove_in. Qed. Lemma remove_2 : ~ E.eq x y -> In y s -> In y (remove x s). Proof. wrap remove remove_in. Qed. Lemma remove_3 : In y (remove x s) -> In y s. Proof. wrap remove remove_in. Qed. Lemma singleton_1 : In y (singleton x) -> E.eq x y. Proof. exact (@singleton_1 x y). Qed. Lemma singleton_2 : E.eq x y -> In y (singleton x). Proof. exact (@singleton_2 x y). Qed. Lemma union_1 : In x (union s s') -> In x s \/ In x s'. Proof. wrap union union_in. Qed. Lemma union_2 : In x s -> In x (union s s'). Proof. wrap union union_in. Qed. Lemma union_3 : In x s' -> In x (union s s'). Proof. wrap union union_in. Qed. Lemma ocaml_union_alt : Equal (ocaml_union s s') (union s s'). Proof. unfold ocaml_union, union, Equal, In. destruct s as (s0,b,a); destruct s' as (s0',b',a'); simpl. exact (@ocaml_union_alt (s0,s0') b a b' a'). Qed. Lemma ocaml_union_1 : In x (ocaml_union s s') -> In x s \/ In x s'. Proof. wrap ocaml_union ocaml_union_in; simpl; auto. Qed. Lemma ocaml_union_2 : In x s -> In x (ocaml_union s s'). Proof. wrap ocaml_union ocaml_union_in; simpl; auto. Qed. Lemma ocaml_union_3 : In x s' -> In x (ocaml_union s s'). Proof. wrap ocaml_union ocaml_union_in; simpl; auto. Qed. Lemma inter_1 : In x (inter s s') -> In x s. Proof. wrap inter inter_in. Qed. Lemma inter_2 : In x (inter s s') -> In x s'. Proof. wrap inter inter_in. Qed. Lemma inter_3 : In x s -> In x s' -> In x (inter s s'). Proof. wrap inter inter_in. Qed. Lemma diff_1 : In x (diff s s') -> In x s. Proof. wrap diff diff_in. Qed. Lemma diff_2 : In x (diff s s') -> ~ In x s'. Proof. wrap diff diff_in. Qed. Lemma diff_3 : In x s -> ~ In x s' -> In x (diff s s'). Proof. wrap diff diff_in. Qed. Lemma fold_1 : forall (A : Type) (i : A) (f : elt -> A -> A), fold f s i = fold_left (fun a e => f e a) (elements s) i. Proof. unfold fold, elements; intros; apply fold_1; auto. Qed. Lemma cardinal_1 : cardinal s = length (elements s). Proof. unfold cardinal, elements; intros; apply elements_cardinal; auto. Qed. Section Filter. Variable f : elt -> bool. Lemma filter_1 : compat_bool E.eq f -> In x (filter f s) -> In x s. Proof. intro. wrap filter filter_in. Qed. Lemma filter_2 : compat_bool E.eq f -> In x (filter f s) -> f x = true. Proof. intro. wrap filter filter_in. Qed. Lemma filter_3 : compat_bool E.eq f -> In x s -> f x = true -> In x (filter f s). Proof. intro. wrap filter filter_in. Qed. Lemma for_all_1 : compat_bool E.eq f -> For_all (fun x => f x = true) s -> for_all f s = true. Proof. exact (@for_all_1 f s). Qed. Lemma for_all_2 : compat_bool E.eq f -> for_all f s = true -> For_all (fun x => f x = true) s. Proof. exact (@for_all_2 f s). Qed. Lemma exists_1 : compat_bool E.eq f -> Exists (fun x => f x = true) s -> exists_ f s = true. Proof. exact (@exists_1 f s). Qed. Lemma exists_2 : compat_bool E.eq f -> exists_ f s = true -> Exists (fun x => f x = true) s. Proof. exact (@exists_2 f s). Qed. Lemma partition_1 : compat_bool E.eq f -> Equal (fst (partition f s)) (filter f s). Proof. unfold partition, filter, Equal, In; simpl ;intros H a. rewrite partition_in_1, filter_in; intuition. Qed. Lemma partition_2 : compat_bool E.eq f -> Equal (snd (partition f s)) (filter (fun x => negb (f x)) s). Proof. unfold partition, filter, Equal, In; simpl ;intros H a. rewrite partition_in_2, filter_in; intuition. rewrite H2; auto. destruct (f a); auto. red; intros; f_equal. rewrite (H _ _ H0); auto. Qed. End Filter. Lemma elements_1 : In x s -> InA E.eq x (elements s). Proof. wrap elements elements_in. Qed. Lemma elements_2 : InA E.eq x (elements s) -> In x s. Proof. wrap elements elements_in. Qed. Lemma elements_3 : sort E.lt (elements s). Proof. exact (elements_sort (is_bst s)). Qed. Lemma elements_3w : NoDupA E.eq (elements s). Proof. exact (elements_nodup (is_bst s)). Qed. Lemma min_elt_1 : min_elt s = Some x -> In x s. Proof. exact (@min_elt_1 s x). Qed. Lemma min_elt_2 : min_elt s = Some x -> In y s -> ~ E.lt y x. Proof. exact (@min_elt_2 s x y (is_bst s)). Qed. Lemma min_elt_3 : min_elt s = None -> Empty s. Proof. exact (@min_elt_3 s). Qed. Lemma max_elt_1 : max_elt s = Some x -> In x s. Proof. exact (@max_elt_1 s x). Qed. Lemma max_elt_2 : max_elt s = Some x -> In y s -> ~ E.lt x y. Proof. exact (@max_elt_2 s x y (is_bst s)). Qed. Lemma max_elt_3 : max_elt s = None -> Empty s. Proof. exact (@max_elt_3 s). Qed. Lemma choose_1 : choose s = Some x -> In x s. Proof. exact (@choose_1 s x). Qed. Lemma choose_2 : choose s = None -> Empty s. Proof. exact (@choose_2 s). Qed. Lemma choose_3 : choose s = Some x -> choose s' = Some y -> Equal s s' -> E.eq x y. Proof. exact (@choose_3 _ _ (is_bst s) (is_bst s') x y). Qed. Lemma eq_refl : eq s s. Proof. exact (eq_refl s). Qed. Lemma eq_sym : eq s s' -> eq s' s. Proof. exact (@eq_sym s s'). Qed. Lemma eq_trans : eq s s' -> eq s' s'' -> eq s s''. Proof. exact (@eq_trans s s' s''). Qed. Lemma lt_trans : lt s s' -> lt s' s'' -> lt s s''. Proof. exact (@lt_trans s s' s''). Qed. Lemma lt_not_eq : lt s s' -> ~eq s s'. Proof. exact (@lt_not_eq _ _ (is_bst s) (is_bst s')). Qed. End Specs. End IntMake. (* For concrete use inside Coq, we propose an instantiation of [Int] by [Z]. *) Module Make (X: OrderedType) <: S with Module E := X :=IntMake(Z_as_Int)(X).