(***********************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *) (* \VV/ *************************************************************) (* // * This file is distributed under the terms of the *) (* * GNU Lesser General Public License Version 2.1 *) (***********************************************************************) (** * Compatibility functors between FSetInterface and MSetInterface. *) Require Import FSetInterface FSetFacts MSetInterface MSetFacts. Set Implicit Arguments. Unset Strict Implicit. (** * From new Weak Sets to old ones *) Module Backport_WSets (E:DecidableType.DecidableType) (M:MSetInterface.WSets with Definition E.t := E.t with Definition E.eq := E.eq) <: FSetInterface.WSfun E. Definition elt := E.t. Definition t := M.t. Implicit Type s : t. Implicit Type x y : elt. Implicit Type f : elt -> bool. Definition In : elt -> t -> Prop := M.In. Definition Equal s s' := forall a : elt, In a s <-> In a s'. Definition Subset s s' := forall a : elt, In a s -> In a s'. Definition Empty s := forall a : elt, ~ In a s. Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x. Definition Exists (P : elt -> Prop) s := exists x, In x s /\ P x. Definition empty : t := M.empty. Definition is_empty : t -> bool := M.is_empty. Definition mem : elt -> t -> bool := M.mem. Definition add : elt -> t -> t := M.add. Definition singleton : elt -> t := M.singleton. Definition remove : elt -> t -> t := M.remove. Definition union : t -> t -> t := M.union. Definition inter : t -> t -> t := M.inter. Definition diff : t -> t -> t := M.diff. Definition eq : t -> t -> Prop := M.eq. Definition eq_dec : forall s s', {eq s s'}+{~eq s s'}:= M.eq_dec. Definition equal : t -> t -> bool := M.equal. Definition subset : t -> t -> bool := M.subset. Definition fold : forall A : Type, (elt -> A -> A) -> t -> A -> A := M.fold. Definition for_all : (elt -> bool) -> t -> bool := M.for_all. Definition exists_ : (elt -> bool) -> t -> bool := M.exists_. Definition filter : (elt -> bool) -> t -> t := M.filter. Definition partition : (elt -> bool) -> t -> t * t:= M.partition. Definition cardinal : t -> nat := M.cardinal. Definition elements : t -> list elt := M.elements. Definition choose : t -> option elt := M.choose. Module MF := MSetFacts.WFacts M. Definition In_1 : forall s x y, E.eq x y -> In x s -> In y s := MF.In_1. Definition eq_refl : forall s, eq s s := @Equivalence_Reflexive _ _ M.eq_equiv. Definition eq_sym : forall s s', eq s s' -> eq s' s := @Equivalence_Symmetric _ _ M.eq_equiv. Definition eq_trans : forall s s' s'', eq s s' -> eq s' s'' -> eq s s'' := @Equivalence_Transitive _ _ M.eq_equiv. Definition mem_1 : forall s x, In x s -> mem x s = true := MF.mem_1. Definition mem_2 : forall s x, mem x s = true -> In x s := MF.mem_2. Definition equal_1 : forall s s', Equal s s' -> equal s s' = true := MF.equal_1. Definition equal_2 : forall s s', equal s s' = true -> Equal s s' := MF.equal_2. Definition subset_1 : forall s s', Subset s s' -> subset s s' = true := MF.subset_1. Definition subset_2 : forall s s', subset s s' = true -> Subset s s' := MF.subset_2. Definition empty_1 : Empty empty := MF.empty_1. Definition is_empty_1 : forall s, Empty s -> is_empty s = true := MF.is_empty_1. Definition is_empty_2 : forall s, is_empty s = true -> Empty s := MF.is_empty_2. Definition add_1 : forall s x y, E.eq x y -> In y (add x s) := MF.add_1. Definition add_2 : forall s x y, In y s -> In y (add x s) := MF.add_2. Definition add_3 : forall s x y, ~ E.eq x y -> In y (add x s) -> In y s := MF.add_3. Definition remove_1 : forall s x y, E.eq x y -> ~ In y (remove x s) := MF.remove_1. Definition remove_2 : forall s x y, ~ E.eq x y -> In y s -> In y (remove x s) := MF.remove_2. Definition remove_3 : forall s x y, In y (remove x s) -> In y s := MF.remove_3. Definition union_1 : forall s s' x, In x (union s s') -> In x s \/ In x s' := MF.union_1. Definition union_2 : forall s s' x, In x s -> In x (union s s') := MF.union_2. Definition union_3 : forall s s' x, In x s' -> In x (union s s') := MF.union_3. Definition inter_1 : forall s s' x, In x (inter s s') -> In x s := MF.inter_1. Definition inter_2 : forall s s' x, In x (inter s s') -> In x s' := MF.inter_2. Definition inter_3 : forall s s' x, In x s -> In x s' -> In x (inter s s') := MF.inter_3. Definition diff_1 : forall s s' x, In x (diff s s') -> In x s := MF.diff_1. Definition diff_2 : forall s s' x, In x (diff s s') -> ~ In x s' := MF.diff_2. Definition diff_3 : forall s s' x, In x s -> ~ In x s' -> In x (diff s s') := MF.diff_3. Definition singleton_1 : forall x y, In y (singleton x) -> E.eq x y := MF.singleton_1. Definition singleton_2 : forall x y, E.eq x y -> In y (singleton x) := MF.singleton_2. Definition fold_1 : forall s (A : Type) (i : A) (f : elt -> A -> A), fold f s i = fold_left (fun a e => f e a) (elements s) i := MF.fold_1. Definition cardinal_1 : forall s, cardinal s = length (elements s) := MF.cardinal_1. Definition filter_1 : forall s x f, compat_bool E.eq f -> In x (filter f s) -> In x s := MF.filter_1. Definition filter_2 : forall s x f, compat_bool E.eq f -> In x (filter f s) -> f x = true := MF.filter_2. Definition filter_3 : forall s x f, compat_bool E.eq f -> In x s -> f x = true -> In x (filter f s) := MF.filter_3. Definition for_all_1 : forall s f, compat_bool E.eq f -> For_all (fun x => f x = true) s -> for_all f s = true := MF.for_all_1. Definition for_all_2 : forall s f, compat_bool E.eq f -> for_all f s = true -> For_all (fun x => f x = true) s := MF.for_all_2. Definition exists_1 : forall s f, compat_bool E.eq f -> Exists (fun x => f x = true) s -> exists_ f s = true := MF.exists_1. Definition exists_2 : forall s f, compat_bool E.eq f -> exists_ f s = true -> Exists (fun x => f x = true) s := MF.exists_2. Definition partition_1 : forall s f, compat_bool E.eq f -> Equal (fst (partition f s)) (filter f s) := MF.partition_1. Definition partition_2 : forall s f, compat_bool E.eq f -> Equal (snd (partition f s)) (filter (fun x => negb (f x)) s) := MF.partition_2. Definition choose_1 : forall s x, choose s = Some x -> In x s := MF.choose_1. Definition choose_2 : forall s, choose s = None -> Empty s := MF.choose_2. Definition elements_1 : forall s x, In x s -> InA E.eq x (elements s) := MF.elements_1. Definition elements_2 : forall s x, InA E.eq x (elements s) -> In x s := MF.elements_2. Definition elements_3w : forall s, NoDupA E.eq (elements s) := MF.elements_3w. End Backport_WSets. (** * From new Sets to new ones *) Module Backport_Sets (E:OrderedType.OrderedType) (M:MSetInterface.Sets with Definition E.t := E.t with Definition E.eq := E.eq with Definition E.lt := E.lt) <: FSetInterface.S with Module E:=E. Include Backport_WSets E M. Implicit Type s : t. Implicit Type x y : elt. Definition lt : t -> t -> Prop := M.lt. Definition min_elt : t -> option elt := M.min_elt. Definition max_elt : t -> option elt := M.max_elt. Definition min_elt_1 : forall s x, min_elt s = Some x -> In x s := M.min_elt_spec1. Definition min_elt_2 : forall s x y, min_elt s = Some x -> In y s -> ~ E.lt y x := M.min_elt_spec2. Definition min_elt_3 : forall s, min_elt s = None -> Empty s := M.min_elt_spec3. Definition max_elt_1 : forall s x, max_elt s = Some x -> In x s := M.max_elt_spec1. Definition max_elt_2 : forall s x y, max_elt s = Some x -> In y s -> ~ E.lt x y := M.max_elt_spec2. Definition max_elt_3 : forall s, max_elt s = None -> Empty s := M.max_elt_spec3. Definition elements_3 : forall s, sort E.lt (elements s) := M.elements_spec2. Definition choose_3 : forall s s' x y, choose s = Some x -> choose s' = Some y -> Equal s s' -> E.eq x y := M.choose_spec3. Definition lt_trans : forall s s' s'', lt s s' -> lt s' s'' -> lt s s'' := @StrictOrder_Transitive _ _ M.lt_strorder. Lemma lt_not_eq : forall s s', lt s s' -> ~ eq s s'. Proof. unfold lt, eq. intros s s' Hlt Heq. rewrite Heq in Hlt. apply (StrictOrder_Irreflexive s'); auto. Qed. Definition compare : forall s s', Compare lt eq s s'. Proof. intros s s'; destruct (CompSpec2Type (M.compare_spec s s')); [ apply EQ | apply LT | apply GT ]; auto. Defined. Module E := E. End Backport_Sets. (** * From old Weak Sets to new ones. *) Module Update_WSets (E:Equalities.DecidableType) (M:FSetInterface.WS with Definition E.t := E.t with Definition E.eq := E.eq) <: MSetInterface.WSetsOn E. Definition elt := E.t. Definition t := M.t. Implicit Type s : t. Implicit Type x y : elt. Implicit Type f : elt -> bool. Definition In : elt -> t -> Prop := M.In. Definition Equal s s' := forall a : elt, In a s <-> In a s'. Definition Subset s s' := forall a : elt, In a s -> In a s'. Definition Empty s := forall a : elt, ~ In a s. Definition For_all (P : elt -> Prop) s := forall x, In x s -> P x. Definition Exists (P : elt -> Prop) s := exists x, In x s /\ P x. Definition empty : t := M.empty. Definition is_empty : t -> bool := M.is_empty. Definition mem : elt -> t -> bool := M.mem. Definition add : elt -> t -> t := M.add. Definition singleton : elt -> t := M.singleton. Definition remove : elt -> t -> t := M.remove. Definition union : t -> t -> t := M.union. Definition inter : t -> t -> t := M.inter. Definition diff : t -> t -> t := M.diff. Definition eq : t -> t -> Prop := M.eq. Definition eq_dec : forall s s', {eq s s'}+{~eq s s'}:= M.eq_dec. Definition equal : t -> t -> bool := M.equal. Definition subset : t -> t -> bool := M.subset. Definition fold : forall A : Type, (elt -> A -> A) -> t -> A -> A := M.fold. Definition for_all : (elt -> bool) -> t -> bool := M.for_all. Definition exists_ : (elt -> bool) -> t -> bool := M.exists_. Definition filter : (elt -> bool) -> t -> t := M.filter. Definition partition : (elt -> bool) -> t -> t * t:= M.partition. Definition cardinal : t -> nat := M.cardinal. Definition elements : t -> list elt := M.elements. Definition choose : t -> option elt := M.choose. Module MF := FSetFacts.WFacts M. Instance In_compat : Proper (E.eq==>Logic.eq==>iff) In. Proof. intros x x' Hx s s' Hs. subst. apply MF.In_eq_iff; auto. Qed. Instance eq_equiv : Equivalence eq. Section Spec. Variable s s': t. Variable x y : elt. Lemma mem_spec : mem x s = true <-> In x s. Proof. intros; symmetry; apply MF.mem_iff. Qed. Lemma equal_spec : equal s s' = true <-> Equal s s'. Proof. intros; symmetry; apply MF.equal_iff. Qed. Lemma subset_spec : subset s s' = true <-> Subset s s'. Proof. intros; symmetry; apply MF.subset_iff. Qed. Definition empty_spec : Empty empty := M.empty_1. Lemma is_empty_spec : is_empty s = true <-> Empty s. Proof. intros; symmetry; apply MF.is_empty_iff. Qed. Lemma add_spec : In y (add x s) <-> E.eq y x \/ In y s. Proof. intros. rewrite MF.add_iff. intuition. Qed. Lemma remove_spec : In y (remove x s) <-> In y s /\ ~E.eq y x. Proof. intros. rewrite MF.remove_iff. intuition. Qed. Lemma singleton_spec : In y (singleton x) <-> E.eq y x. Proof. intros; rewrite MF.singleton_iff. intuition. Qed. Definition union_spec : In x (union s s') <-> In x s \/ In x s' := @MF.union_iff s s' x. Definition inter_spec : In x (inter s s') <-> In x s /\ In x s' := @MF.inter_iff s s' x. Definition diff_spec : In x (diff s s') <-> In x s /\ ~In x s' := @MF.diff_iff s s' x. Definition fold_spec : forall (A : Type) (i : A) (f : elt -> A -> A), fold f s i = fold_left (flip f) (elements s) i := @M.fold_1 s. Definition cardinal_spec : cardinal s = length (elements s) := @M.cardinal_1 s. Lemma elements_spec1 : InA E.eq x (elements s) <-> In x s. Proof. intros; symmetry; apply MF.elements_iff. Qed. Definition elements_spec2w : NoDupA E.eq (elements s) := @M.elements_3w s. Definition choose_spec1 : choose s = Some x -> In x s := @M.choose_1 s x. Definition choose_spec2 : choose s = None -> Empty s := @M.choose_2 s. Definition filter_spec : forall f, Proper (E.eq==>Logic.eq) f -> (In x (filter f s) <-> In x s /\ f x = true) := @MF.filter_iff s x. Definition partition_spec1 : forall f, Proper (E.eq==>Logic.eq) f -> Equal (fst (partition f s)) (filter f s) := @M.partition_1 s. Definition partition_spec2 : forall f, Proper (E.eq==>Logic.eq) f -> Equal (snd (partition f s)) (filter (fun x => negb (f x)) s) := @M.partition_2 s. Lemma for_all_spec : forall f, Proper (E.eq==>Logic.eq) f -> (for_all f s = true <-> For_all (fun x => f x = true) s). Proof. intros; symmetry; apply MF.for_all_iff; auto. Qed. Lemma exists_spec : forall f, Proper (E.eq==>Logic.eq) f -> (exists_ f s = true <-> Exists (fun x => f x = true) s). Proof. intros; symmetry; apply MF.exists_iff; auto. Qed. End Spec. End Update_WSets. (** * From old Sets to new ones. *) Module Update_Sets (E:Orders.OrderedType) (M:FSetInterface.S with Definition E.t := E.t with Definition E.eq := E.eq with Definition E.lt := E.lt) <: MSetInterface.Sets with Module E:=E. Include Update_WSets E M. Implicit Type s : t. Implicit Type x y : elt. Definition lt : t -> t -> Prop := M.lt. Definition min_elt : t -> option elt := M.min_elt. Definition max_elt : t -> option elt := M.max_elt. Definition min_elt_spec1 : forall s x, min_elt s = Some x -> In x s := M.min_elt_1. Definition min_elt_spec2 : forall s x y, min_elt s = Some x -> In y s -> ~ E.lt y x := M.min_elt_2. Definition min_elt_spec3 : forall s, min_elt s = None -> Empty s := M.min_elt_3. Definition max_elt_spec1 : forall s x, max_elt s = Some x -> In x s := M.max_elt_1. Definition max_elt_spec2 : forall s x y, max_elt s = Some x -> In y s -> ~ E.lt x y := M.max_elt_2. Definition max_elt_spec3 : forall s, max_elt s = None -> Empty s := M.max_elt_3. Definition elements_spec2 : forall s, sort E.lt (elements s) := M.elements_3. Definition choose_spec3 : forall s s' x y, choose s = Some x -> choose s' = Some y -> Equal s s' -> E.eq x y := M.choose_3. Instance lt_strorder : StrictOrder lt. Proof. split. intros x Hx. apply (M.lt_not_eq Hx); auto with *. exact M.lt_trans. Qed. Instance lt_compat : Proper (eq==>eq==>iff) lt. Proof. apply proper_sym_impl_iff_2; auto with *. intros s s' Hs u u' Hu H. assert (H0 : lt s' u). destruct (M.compare s' u) as [H'|H'|H']; auto. elim (M.lt_not_eq H). transitivity s'; auto with *. elim (M.lt_not_eq (M.lt_trans H H')); auto. destruct (M.compare s' u') as [H'|H'|H']; auto. elim (M.lt_not_eq H). transitivity u'; auto with *. transitivity s'; auto with *. elim (M.lt_not_eq (M.lt_trans H' H0)); auto with *. Qed. Definition compare s s' := match M.compare s s' with | EQ _ => Eq | LT _ => Lt | GT _ => Gt end. Lemma compare_spec : forall s s', CompSpec eq lt s s' (compare s s'). Proof. intros; unfold compare; destruct M.compare; auto. Qed. Module E := E. End Update_Sets.