(* -*- coding: utf-8 -*- *) (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* R x y -> False. (** Opaque for proof-search. *) Typeclasses Opaque complement. (** These are convertible. *) Lemma complement_inverse : forall A (R : relation A), complement (inverse R) = inverse (complement R). Proof. reflexivity. Qed. (** We rebind relations in separate classes to be able to overload each proof. *) Set Implicit Arguments. Unset Strict Implicit. Class Reflexive {A} (R : relation A) := reflexivity : forall x, R x x. Class Irreflexive {A} (R : relation A) := irreflexivity : Reflexive (complement R). Hint Extern 1 (Reflexive (complement _)) => class_apply @irreflexivity : typeclass_instances. Class Symmetric {A} (R : relation A) := symmetry : forall x y, R x y -> R y x. Class Asymmetric {A} (R : relation A) := asymmetry : forall x y, R x y -> R y x -> False. Class Transitive {A} (R : relation A) := transitivity : forall x y z, R x y -> R y z -> R x z. Hint Resolve @irreflexivity : ord. Unset Implicit Arguments. (** A HintDb for relations. *) Ltac solve_relation := match goal with | [ |- ?R ?x ?x ] => reflexivity | [ H : ?R ?x ?y |- ?R ?y ?x ] => symmetry ; exact H end. Hint Extern 4 => solve_relation : relations. (** We can already dualize all these properties. *) Generalizable Variables A B C D R S T U l eqA eqB eqC eqD. Lemma flip_Reflexive `{Reflexive A R} : Reflexive (flip R). Proof. tauto. Qed. Hint Extern 3 (Reflexive (flip _)) => apply flip_Reflexive : typeclass_instances. Program Definition flip_Irreflexive `(Irreflexive A R) : Irreflexive (flip R) := irreflexivity (R:=R). Program Definition flip_Symmetric `(Symmetric A R) : Symmetric (flip R) := fun x y H => symmetry (R:=R) H. Program Definition flip_Asymmetric `(Asymmetric A R) : Asymmetric (flip R) := fun x y H H' => asymmetry (R:=R) H H'. Program Definition flip_Transitive `(Transitive A R) : Transitive (flip R) := fun x y z H H' => transitivity (R:=R) H' H. Hint Extern 3 (Irreflexive (flip _)) => class_apply flip_Irreflexive : typeclass_instances. Hint Extern 3 (Symmetric (flip _)) => class_apply flip_Symmetric : typeclass_instances. Hint Extern 3 (Asymmetric (flip _)) => class_apply flip_Asymmetric : typeclass_instances. Hint Extern 3 (Transitive (flip _)) => class_apply flip_Transitive : typeclass_instances. Definition Reflexive_complement_Irreflexive `(Reflexive A (R : relation A)) : Irreflexive (complement R). Proof. firstorder. Qed. Definition complement_Symmetric `(Symmetric A (R : relation A)) : Symmetric (complement R). Proof. firstorder. Qed. Hint Extern 3 (Symmetric (complement _)) => class_apply complement_Symmetric : typeclass_instances. Hint Extern 3 (Irreflexive (complement _)) => class_apply Reflexive_complement_Irreflexive : typeclass_instances. (** * Standard instances. *) Ltac reduce_hyp H := match type of H with | context [ _ <-> _ ] => fail 1 | _ => red in H ; try reduce_hyp H end. Ltac reduce_goal := match goal with | [ |- _ <-> _ ] => fail 1 | _ => red ; intros ; try reduce_goal end. Tactic Notation "reduce" "in" hyp(Hid) := reduce_hyp Hid. Ltac reduce := reduce_goal. Tactic Notation "apply" "*" constr(t) := first [ refine t | refine (t _) | refine (t _ _) | refine (t _ _ _) | refine (t _ _ _ _) | refine (t _ _ _ _ _) | refine (t _ _ _ _ _ _) | refine (t _ _ _ _ _ _ _) ]. Ltac simpl_relation := unfold flip, impl, arrow ; try reduce ; program_simpl ; try ( solve [ intuition ]). Local Obligation Tactic := simpl_relation. (** Logical implication. *) Program Instance impl_Reflexive : Reflexive impl. Program Instance impl_Transitive : Transitive impl. (** Logical equivalence. *) Instance iff_Reflexive : Reflexive iff := iff_refl. Instance iff_Symmetric : Symmetric iff := iff_sym. Instance iff_Transitive : Transitive iff := iff_trans. (** Leibniz equality. *) Instance eq_Reflexive {A} : Reflexive (@eq A) := @eq_refl A. Instance eq_Symmetric {A} : Symmetric (@eq A) := @eq_sym A. Instance eq_Transitive {A} : Transitive (@eq A) := @eq_trans A. (** Various combinations of reflexivity, symmetry and transitivity. *) (** A [PreOrder] is both Reflexive and Transitive. *) Class PreOrder {A} (R : relation A) : Prop := { PreOrder_Reflexive :> Reflexive R | 2 ; PreOrder_Transitive :> Transitive R | 2 }. (** A partial equivalence relation is Symmetric and Transitive. *) Class PER {A} (R : relation A) : Prop := { PER_Symmetric :> Symmetric R | 3 ; PER_Transitive :> Transitive R | 3 }. (** Equivalence relations. *) Class Equivalence {A} (R : relation A) : Prop := { Equivalence_Reflexive :> Reflexive R ; Equivalence_Symmetric :> Symmetric R ; Equivalence_Transitive :> Transitive R }. (** An Equivalence is a PER plus reflexivity. *) Instance Equivalence_PER `(Equivalence A R) : PER R | 10 := { PER_Symmetric := Equivalence_Symmetric ; PER_Transitive := Equivalence_Transitive }. (** We can now define antisymmetry w.r.t. an equivalence relation on the carrier. *) Class Antisymmetric A eqA `{equ : Equivalence A eqA} (R : relation A) := antisymmetry : forall {x y}, R x y -> R y x -> eqA x y. Program Definition flip_antiSymmetric `(Antisymmetric A eqA R) : Antisymmetric A eqA (flip R). Proof. firstorder. Qed. (** Leibinz equality [eq] is an equivalence relation. The instance has low priority as it is always applicable if only the type is constrained. *) Program Instance eq_equivalence : Equivalence (@eq A) | 10. (** Logical equivalence [iff] is an equivalence relation. *) Program Instance iff_equivalence : Equivalence iff. (** We now develop a generalization of results on relations for arbitrary predicates. The resulting theory can be applied to homogeneous binary relations but also to arbitrary n-ary predicates. *) Local Open Scope list_scope. (* Notation " [ ] " := nil : list_scope. *) (* Notation " [ x ; .. ; y ] " := (cons x .. (cons y nil) ..) (at level 1) : list_scope. *) (** A compact representation of non-dependent arities, with the codomain singled-out. *) (* Note, we do not use [list Type] because it imposes unnecessary universe constraints *) Inductive Tlist : Type := Tnil : Tlist | Tcons : Type -> Tlist -> Tlist. Local Infix "::" := Tcons. Fixpoint arrows (l : Tlist) (r : Type) : Type := match l with | Tnil => r | A :: l' => A -> arrows l' r end. (** We can define abbreviations for operation and relation types based on [arrows]. *) Definition unary_operation A := arrows (A::Tnil) A. Definition binary_operation A := arrows (A::A::Tnil) A. Definition ternary_operation A := arrows (A::A::A::Tnil) A. (** We define n-ary [predicate]s as functions into [Prop]. *) Notation predicate l := (arrows l Prop). (** Unary predicates, or sets. *) Definition unary_predicate A := predicate (A::Tnil). (** Homogeneous binary relations, equivalent to [relation A]. *) Definition binary_relation A := predicate (A::A::Tnil). (** We can close a predicate by universal or existential quantification. *) Fixpoint predicate_all (l : Tlist) : predicate l -> Prop := match l with | Tnil => fun f => f | A :: tl => fun f => forall x : A, predicate_all tl (f x) end. Fixpoint predicate_exists (l : Tlist) : predicate l -> Prop := match l with | Tnil => fun f => f | A :: tl => fun f => exists x : A, predicate_exists tl (f x) end. (** Pointwise extension of a binary operation on [T] to a binary operation on functions whose codomain is [T]. For an operator on [Prop] this lifts the operator to a binary operation. *) Fixpoint pointwise_extension {T : Type} (op : binary_operation T) (l : Tlist) : binary_operation (arrows l T) := match l with | Tnil => fun R R' => op R R' | A :: tl => fun R R' => fun x => pointwise_extension op tl (R x) (R' x) end. (** Pointwise lifting, equivalent to doing [pointwise_extension] and closing using [predicate_all]. *) Fixpoint pointwise_lifting (op : binary_relation Prop) (l : Tlist) : binary_relation (predicate l) := match l with | Tnil => fun R R' => op R R' | A :: tl => fun R R' => forall x, pointwise_lifting op tl (R x) (R' x) end. (** The n-ary equivalence relation, defined by lifting the 0-ary [iff] relation. *) Definition predicate_equivalence {l : Tlist} : binary_relation (predicate l) := pointwise_lifting iff l. (** The n-ary implication relation, defined by lifting the 0-ary [impl] relation. *) Definition predicate_implication {l : Tlist} := pointwise_lifting impl l. (** Notations for pointwise equivalence and implication of predicates. *) Infix "<∙>" := predicate_equivalence (at level 95, no associativity) : predicate_scope. Infix "-∙>" := predicate_implication (at level 70, right associativity) : predicate_scope. Local Open Scope predicate_scope. (** The pointwise liftings of conjunction and disjunctions. Note that these are [binary_operation]s, building new relations out of old ones. *) Definition predicate_intersection := pointwise_extension and. Definition predicate_union := pointwise_extension or. Infix "/∙\" := predicate_intersection (at level 80, right associativity) : predicate_scope. Infix "\∙/" := predicate_union (at level 85, right associativity) : predicate_scope. (** The always [True] and always [False] predicates. *) Fixpoint true_predicate {l : Tlist} : predicate l := match l with | Tnil => True | A :: tl => fun _ => @true_predicate tl end. Fixpoint false_predicate {l : Tlist} : predicate l := match l with | Tnil => False | A :: tl => fun _ => @false_predicate tl end. Notation "∙⊤∙" := true_predicate : predicate_scope. Notation "∙⊥∙" := false_predicate : predicate_scope. (** Predicate equivalence is an equivalence, and predicate implication defines a preorder. *) Program Instance predicate_equivalence_equivalence : Equivalence (@predicate_equivalence l). Next Obligation. induction l ; firstorder. Qed. Next Obligation. induction l ; firstorder. Qed. Next Obligation. fold pointwise_lifting. induction l. firstorder. intros. simpl in *. pose (IHl (x x0) (y x0) (z x0)). firstorder. Qed. Program Instance predicate_implication_preorder : PreOrder (@predicate_implication l). Next Obligation. induction l ; firstorder. Qed. Next Obligation. induction l. firstorder. unfold predicate_implication in *. simpl in *. intro. pose (IHl (x x0) (y x0) (z x0)). firstorder. Qed. (** We define the various operations which define the algebra on binary relations, from the general ones. *) Definition relation_equivalence {A : Type} : relation (relation A) := @predicate_equivalence (_::_::Tnil). Class subrelation {A:Type} (R R' : relation A) : Prop := is_subrelation : @predicate_implication (A::A::Tnil) R R'. Arguments subrelation {A} R R'. Definition relation_conjunction {A} (R : relation A) (R' : relation A) : relation A := @predicate_intersection (A::A::Tnil) R R'. Definition relation_disjunction {A} (R : relation A) (R' : relation A) : relation A := @predicate_union (A::A::Tnil) R R'. (** Relation equivalence is an equivalence, and subrelation defines a partial order. *) Set Automatic Introduction. Instance relation_equivalence_equivalence (A : Type) : Equivalence (@relation_equivalence A). Proof. exact (@predicate_equivalence_equivalence (A::A::Tnil)). Qed. Instance relation_implication_preorder A : PreOrder (@subrelation A). Proof. exact (@predicate_implication_preorder (A::A::Tnil)). Qed. (** *** Partial Order. A partial order is a preorder which is additionally antisymmetric. We give an equivalent definition, up-to an equivalence relation on the carrier. *) Class PartialOrder {A} eqA `{equ : Equivalence A eqA} R `{preo : PreOrder A R} := partial_order_equivalence : relation_equivalence eqA (relation_conjunction R (inverse R)). (** The equivalence proof is sufficient for proving that [R] must be a morphism for equivalence (see Morphisms). It is also sufficient to show that [R] is antisymmetric w.r.t. [eqA] *) Instance partial_order_antisym `(PartialOrder A eqA R) : ! Antisymmetric A eqA R. Proof with auto. reduce_goal. pose proof partial_order_equivalence as poe. do 3 red in poe. apply <- poe. firstorder. Qed. (** The partial order defined by subrelation and relation equivalence. *) Program Instance subrelation_partial_order : ! PartialOrder (relation A) relation_equivalence subrelation. Next Obligation. Proof. unfold relation_equivalence in *. compute; firstorder. Qed. Typeclasses Opaque arrows predicate_implication predicate_equivalence relation_equivalence pointwise_lifting. (** Rewrite relation on a given support: declares a relation as a rewrite relation for use by the generalized rewriting tactic. It helps choosing if a rewrite should be handled by the generalized or the regular rewriting tactic using leibniz equality. Users can declare an [RewriteRelation A RA] anywhere to declare default relations. This is also done automatically by the [Declare Relation A RA] commands. *) Class RewriteRelation {A : Type} (RA : relation A). Instance: RewriteRelation impl. Instance: RewriteRelation iff. Instance: RewriteRelation (@relation_equivalence A). (** Any [Equivalence] declared in the context is automatically considered a rewrite relation. *) Instance equivalence_rewrite_relation `(Equivalence A eqA) : RewriteRelation eqA. (** Strict Order *) Class StrictOrder {A : Type} (R : relation A) : Prop := { StrictOrder_Irreflexive :> Irreflexive R ; StrictOrder_Transitive :> Transitive R }. Instance StrictOrder_Asymmetric `(StrictOrder A R) : Asymmetric R. Proof. firstorder. Qed. (** Inversing a [StrictOrder] gives another [StrictOrder] *) Lemma StrictOrder_inverse `(StrictOrder A R) : StrictOrder (inverse R). Proof. firstorder. Qed. (** Same for [PartialOrder]. *) Lemma PreOrder_inverse `(PreOrder A R) : PreOrder (inverse R). Proof. firstorder. Qed. Hint Extern 3 (StrictOrder (inverse _)) => class_apply StrictOrder_inverse : typeclass_instances. Hint Extern 3 (PreOrder (inverse _)) => class_apply PreOrder_inverse : typeclass_instances. Lemma PartialOrder_inverse `(PartialOrder A eqA R) : PartialOrder eqA (inverse R). Proof. firstorder. Qed. Hint Extern 3 (PartialOrder (inverse _)) => class_apply PartialOrder_inverse : typeclass_instances.