(* -*- coding: utf-8 -*- *) (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* .. (fun y => t) ..) (at level 200, x binder, y binder, right associativity). Local Notation "'Π' x .. y , P" := (forall x, .. (forall y, P) ..) (at level 200, x binder, y binder, right associativity) : type_scope. (** * Morphisms. We now turn to the definition of [Proper] and declare standard instances. These will be used by the [setoid_rewrite] tactic later. *) (** A morphism for a relation [R] is a proper element of the relation. The relation [R] will be instantiated by [respectful] and [A] by an arrow type for usual morphisms. *) Class Proper {A} (R : relation A) (m : A) : Prop := proper_prf : R m m. (** Respectful morphisms. *) (** The fully dependent version, not used yet. *) Definition respectful_hetero (A B : Type) (C : A -> Type) (D : B -> Type) (R : A -> B -> Prop) (R' : forall (x : A) (y : B), C x -> D y -> Prop) : (forall x : A, C x) -> (forall x : B, D x) -> Prop := fun f g => forall x y, R x y -> R' x y (f x) (g y). (** The non-dependent version is an instance where we forget dependencies. *) Definition respectful {A B : Type} (R : relation A) (R' : relation B) : relation (A -> B) := Eval compute in @respectful_hetero A A (fun _ => B) (fun _ => B) R (fun _ _ => R'). (** Notations reminiscent of the old syntax for declaring morphisms. *) Delimit Scope signature_scope with signature. Arguments Scope Proper [type_scope signature_scope]. Arguments Scope respectful [type_scope type_scope signature_scope signature_scope]. Module ProperNotations. Notation " R ++> R' " := (@respectful _ _ (R%signature) (R'%signature)) (right associativity, at level 55) : signature_scope. Notation " R ==> R' " := (@respectful _ _ (R%signature) (R'%signature)) (right associativity, at level 55) : signature_scope. Notation " R --> R' " := (@respectful _ _ (inverse (R%signature)) (R'%signature)) (right associativity, at level 55) : signature_scope. End ProperNotations. Export ProperNotations. Open Local Scope signature_scope. (** Dependent pointwise lifting of a relation on the range. *) Definition forall_relation {A : Type} {B : A -> Type} (sig : Π a : A, relation (B a)) : relation (Π x : A, B x) := λ f g, Π a : A, sig a (f a) (g a). Arguments Scope forall_relation [type_scope type_scope signature_scope]. (** Non-dependent pointwise lifting *) Definition pointwise_relation (A : Type) {B : Type} (R : relation B) : relation (A -> B) := Eval compute in forall_relation (B:=λ _, B) (λ _, R). Lemma pointwise_pointwise A B (R : relation B) : relation_equivalence (pointwise_relation A R) (@eq A ==> R). Proof. intros. split. simpl_relation. firstorder. Qed. (** We can build a PER on the Coq function space if we have PERs on the domain and codomain. *) Hint Unfold Reflexive : core. Hint Unfold Symmetric : core. Hint Unfold Transitive : core. Typeclasses Opaque respectful pointwise_relation forall_relation. Program Instance respectful_per `(PER A R, PER B R') : PER (R ==> R'). Next Obligation. Proof with auto. assert(R x0 x0). transitivity y0... symmetry... transitivity (y x0)... Qed. (** Subrelations induce a morphism on the identity. *) Instance subrelation_id_proper `(subrelation A R₁ R₂) : Proper (R₁ ==> R₂) id. Proof. firstorder. Qed. (** The subrelation property goes through products as usual. *) Lemma subrelation_respectful `(subl : subrelation A R₂ R₁, subr : subrelation B S₁ S₂) : subrelation (R₁ ==> S₁) (R₂ ==> S₂). Proof. simpl_relation. apply subr. apply H. apply subl. apply H0. Qed. (** And of course it is reflexive. *) Lemma subrelation_refl A R : @subrelation A R R. Proof. simpl_relation. Qed. Ltac subrelation_tac T U := (is_ground T ; is_ground U ; class_apply @subrelation_refl) || class_apply @subrelation_respectful || class_apply @subrelation_refl. Hint Extern 3 (@subrelation _ ?T ?U) => subrelation_tac T U : typeclass_instances. (** [Proper] is itself a covariant morphism for [subrelation]. *) Lemma subrelation_proper `(mor : Proper A R₁ m, unc : Unconvertible (relation A) R₁ R₂, sub : subrelation A R₁ R₂) : Proper R₂ m. Proof. intros. apply sub. apply mor. Qed. CoInductive apply_subrelation : Prop := do_subrelation. Ltac proper_subrelation := match goal with [ H : apply_subrelation |- _ ] => clear H ; class_apply @subrelation_proper end. Hint Extern 5 (@Proper _ ?H _) => proper_subrelation : typeclass_instances. Instance proper_subrelation_proper : Proper (subrelation ++> eq ==> impl) (@Proper A). Proof. reduce. subst. firstorder. Qed. (** Essential subrelation instances for [iff], [impl] and [pointwise_relation]. *) Instance iff_impl_subrelation : subrelation iff impl | 2. Proof. firstorder. Qed. Instance iff_inverse_impl_subrelation : subrelation iff (inverse impl) | 2. Proof. firstorder. Qed. Instance pointwise_subrelation {A} `(sub : subrelation B R R') : subrelation (pointwise_relation A R) (pointwise_relation A R') | 4. Proof. reduce. unfold pointwise_relation in *. apply sub. apply H. Qed. (** For dependent function types. *) Lemma forall_subrelation A (B : A -> Type) (R S : forall x : A, relation (B x)) : (forall a, subrelation (R a) (S a)) -> subrelation (forall_relation R) (forall_relation S). Proof. reduce. apply H. apply H0. Qed. (** We use an extern hint to help unification. *) Hint Extern 4 (subrelation (@forall_relation ?A ?B ?R) (@forall_relation _ _ ?S)) => apply (@forall_subrelation A B R S) ; intro : typeclass_instances. (** Any symmetric relation is equal to its inverse. *) Lemma subrelation_symmetric A R `(Symmetric A R) : subrelation (inverse R) R. Proof. reduce. red in H0. symmetry. assumption. Qed. Hint Extern 4 (subrelation (inverse _) _) => class_apply @subrelation_symmetric : typeclass_instances. (** The complement of a relation conserves its proper elements. *) Program Instance complement_proper `(mR : Proper (A -> A -> Prop) (RA ==> RA ==> iff) R) : Proper (RA ==> RA ==> iff) (complement R). Next Obligation. Proof. unfold complement. pose (mR x y H x0 y0 H0). intuition. Qed. (** The [inverse] too, actually the [flip] instance is a bit more general. *) Program Instance flip_proper `(mor : Proper (A -> B -> C) (RA ==> RB ==> RC) f) : Proper (RB ==> RA ==> RC) (flip f). Next Obligation. Proof. apply mor ; auto. Qed. (** Every Transitive relation gives rise to a binary morphism on [impl], contravariant in the first argument, covariant in the second. *) Program Instance trans_contra_co_morphism `(Transitive A R) : Proper (R --> R ++> impl) R. Next Obligation. Proof with auto. transitivity x... transitivity x0... Qed. (** Proper declarations for partial applications. *) Program Instance trans_contra_inv_impl_morphism `(Transitive A R) : Proper (R --> inverse impl) (R x) | 3. Next Obligation. Proof with auto. transitivity y... Qed. Program Instance trans_co_impl_morphism `(Transitive A R) : Proper (R ++> impl) (R x) | 3. Next Obligation. Proof with auto. transitivity x0... Qed. Program Instance trans_sym_co_inv_impl_morphism `(PER A R) : Proper (R ++> inverse impl) (R x) | 3. Next Obligation. Proof with auto. transitivity y... symmetry... Qed. Program Instance trans_sym_contra_impl_morphism `(PER A R) : Proper (R --> impl) (R x) | 3. Next Obligation. Proof with auto. transitivity x0... symmetry... Qed. Program Instance per_partial_app_morphism `(PER A R) : Proper (R ==> iff) (R x) | 2. Next Obligation. Proof with auto. split. intros ; transitivity x0... intros. transitivity y... symmetry... Qed. (** Every Transitive relation induces a morphism by "pushing" an [R x y] on the left of an [R x z] proof to get an [R y z] goal. *) Program Instance trans_co_eq_inv_impl_morphism `(Transitive A R) : Proper (R ==> (@eq A) ==> inverse impl) R | 2. Next Obligation. Proof with auto. transitivity y... Qed. (** Every Symmetric and Transitive relation gives rise to an equivariant morphism. *) Program Instance PER_morphism `(PER A R) : Proper (R ==> R ==> iff) R | 1. Next Obligation. Proof with auto. split ; intros. transitivity x0... transitivity x... symmetry... transitivity y... transitivity y0... symmetry... Qed. Lemma symmetric_equiv_inverse `(Symmetric A R) : relation_equivalence R (flip R). Proof. firstorder. Qed. Program Instance compose_proper A B C R₀ R₁ R₂ : Proper ((R₁ ==> R₂) ==> (R₀ ==> R₁) ==> (R₀ ==> R₂)) (@compose A B C). Next Obligation. Proof. simpl_relation. unfold compose. apply H. apply H0. apply H1. Qed. (** Coq functions are morphisms for Leibniz equality, applied only if really needed. *) Instance reflexive_eq_dom_reflexive (A : Type) `(Reflexive B R') : Reflexive (@Logic.eq A ==> R'). Proof. simpl_relation. Qed. (** [respectful] is a morphism for relation equivalence. *) Instance respectful_morphism : Proper (relation_equivalence ++> relation_equivalence ++> relation_equivalence) (@respectful A B). Proof. reduce. unfold respectful, relation_equivalence, predicate_equivalence in * ; simpl in *. split ; intros. rewrite <- H0. apply H1. rewrite H. assumption. rewrite H0. apply H1. rewrite <- H. assumption. Qed. (** Every element in the carrier of a reflexive relation is a morphism for this relation. We use a proxy class for this case which is used internally to discharge reflexivity constraints. The [Reflexive] instance will almost always be used, but it won't apply in general to any kind of [Proper (A -> B) _ _] goal, making proof-search much slower. A cleaner solution would be to be able to set different priorities in different hint bases and select a particular hint database for resolution of a type class constraint.*) Class ProperProxy {A} (R : relation A) (m : A) : Prop := proper_proxy : R m m. Lemma eq_proper_proxy A (x : A) : ProperProxy (@eq A) x. Proof. firstorder. Qed. Lemma reflexive_proper_proxy `(Reflexive A R) (x : A) : ProperProxy R x. Proof. firstorder. Qed. Lemma proper_proper_proxy `(Proper A R x) : ProperProxy R x. Proof. firstorder. Qed. Hint Extern 1 (ProperProxy _ _) => class_apply @eq_proper_proxy || class_apply @reflexive_proper_proxy : typeclass_instances. Hint Extern 2 (ProperProxy ?R _) => not_evar R; class_apply @proper_proper_proxy : typeclass_instances. (** [R] is Reflexive, hence we can build the needed proof. *) Lemma Reflexive_partial_app_morphism `(Proper (A -> B) (R ==> R') m, ProperProxy A R x) : Proper R' (m x). Proof. simpl_relation. Qed. Class Params {A : Type} (of : A) (arity : nat). Class PartialApplication. CoInductive normalization_done : Prop := did_normalization. Ltac partial_application_tactic := let rec do_partial_apps H m := match m with | ?m' ?x => class_apply @Reflexive_partial_app_morphism ; [do_partial_apps H m'|clear H] | _ => idtac end in let rec do_partial H ar m := match ar with | 0 => do_partial_apps H m | S ?n' => match m with ?m' ?x => do_partial H n' m' end end in let on_morphism m := let m' := fresh in head_of_constr m' m ; let n := fresh in evar (n:nat) ; let v := eval compute in n in clear n ; let H := fresh in assert(H:Params m' v) by typeclasses eauto ; let v' := eval compute in v in subst m'; do_partial H v' m in match goal with | [ _ : normalization_done |- _ ] => fail 1 | [ _ : @Params _ _ _ |- _ ] => fail 1 | [ |- @Proper ?T _ (?m ?x) ] => match goal with | [ _ : PartialApplication |- _ ] => class_apply @Reflexive_partial_app_morphism | _ => on_morphism (m x) || (class_apply @Reflexive_partial_app_morphism ; [ pose Build_PartialApplication | idtac ]) end end. Hint Extern 4 (@Proper _ _ _) => partial_application_tactic : typeclass_instances. Lemma inverse_respectful : forall (A : Type) (R : relation A) (B : Type) (R' : relation B), relation_equivalence (inverse (R ==> R')) (inverse R ==> inverse R'). Proof. intros. unfold flip, respectful. split ; intros ; intuition. Qed. (** Special-purpose class to do normalization of signatures w.r.t. inverse. *) Class Normalizes (A : Type) (m : relation A) (m' : relation A) : Prop := normalizes : relation_equivalence m m'. (** Current strategy: add [inverse] everywhere and reduce using [subrelation] afterwards. *) Lemma inverse_atom A R : Normalizes A R (inverse (inverse R)). Proof. firstorder. Qed. Lemma inverse_arrow `(NA : Normalizes A R (inverse R'''), NB : Normalizes B R' (inverse R'')) : Normalizes (A -> B) (R ==> R') (inverse (R''' ==> R'')%signature). Proof. unfold Normalizes in *. intros. rewrite NA, NB. firstorder. Qed. Ltac inverse := match goal with | [ |- Normalizes _ (respectful _ _) _ ] => class_apply @inverse_arrow | _ => class_apply @inverse_atom end. Hint Extern 1 (Normalizes _ _ _) => inverse : typeclass_instances. (** Treating inverse: can't make them direct instances as we need at least a [flip] present in the goal. *) Lemma inverse1 `(subrelation A R' R) : subrelation (inverse (inverse R')) R. Proof. firstorder. Qed. Lemma inverse2 `(subrelation A R R') : subrelation R (inverse (inverse R')). Proof. firstorder. Qed. Hint Extern 1 (subrelation (flip _) _) => class_apply @inverse1 : typeclass_instances. Hint Extern 1 (subrelation _ (flip _)) => class_apply @inverse2 : typeclass_instances. (** That's if and only if *) Lemma eq_subrelation `(Reflexive A R) : subrelation (@eq A) R. Proof. simpl_relation. Qed. (* Hint Extern 3 (subrelation eq ?R) => not_evar R ; class_apply eq_subrelation : typeclass_instances. *) (** Once we have normalized, we will apply this instance to simplify the problem. *) Definition proper_inverse_proper `(mor : Proper A R m) : Proper (inverse R) m := mor. Hint Extern 2 (@Proper _ (flip _) _) => class_apply @proper_inverse_proper : typeclass_instances. (** Bootstrap !!! *) Instance proper_proper : Proper (relation_equivalence ==> eq ==> iff) (@Proper A). Proof. simpl_relation. reduce in H. split ; red ; intros. setoid_rewrite <- H. apply H0. setoid_rewrite H. apply H0. Qed. Lemma proper_normalizes_proper `(Normalizes A R0 R1, Proper A R1 m) : Proper R0 m. Proof. red in H, H0. setoid_rewrite H. assumption. Qed. Ltac proper_normalization := match goal with | [ _ : normalization_done |- _ ] => fail 1 | [ _ : apply_subrelation |- @Proper _ ?R _ ] => let H := fresh "H" in set(H:=did_normalization) ; class_apply @proper_normalizes_proper end. Hint Extern 6 (@Proper _ _ _) => proper_normalization : typeclass_instances. (** Every reflexive relation gives rise to a morphism, only for immediately solving goals without variables. *) Lemma reflexive_proper `{Reflexive A R} (x : A) : Proper R x. Proof. firstorder. Qed. Lemma proper_eq A (x : A) : Proper (@eq A) x. Proof. intros. apply reflexive_proper. Qed. Ltac proper_reflexive := match goal with | [ _ : normalization_done |- _ ] => fail 1 | _ => class_apply proper_eq || class_apply @reflexive_proper end. Hint Extern 7 (@Proper _ _ _) => proper_reflexive : typeclass_instances. (** When the relation on the domain is symmetric, we can inverse the relation on the codomain. Same for binary functions. *) Lemma proper_sym_flip : forall `(Symmetric A R1)`(Proper (A->B) (R1==>R2) f), Proper (R1==>inverse R2) f. Proof. intros A R1 Sym B R2 f Hf. intros x x' Hxx'. apply Hf, Sym, Hxx'. Qed. Lemma proper_sym_flip_2 : forall `(Symmetric A R1)`(Symmetric B R2)`(Proper (A->B->C) (R1==>R2==>R3) f), Proper (R1==>R2==>inverse R3) f. Proof. intros A R1 Sym1 B R2 Sym2 C R3 f Hf. intros x x' Hxx' y y' Hyy'. apply Hf; auto. Qed. (** When the relation on the domain is symmetric, a predicate is compatible with [iff] as soon as it is compatible with [impl]. Same with a binary relation. *) Lemma proper_sym_impl_iff : forall `(Symmetric A R)`(Proper _ (R==>impl) f), Proper (R==>iff) f. Proof. intros A R Sym f Hf x x' Hxx'. repeat red in Hf. split; eauto. Qed. Lemma proper_sym_impl_iff_2 : forall `(Symmetric A R)`(Symmetric B R')`(Proper _ (R==>R'==>impl) f), Proper (R==>R'==>iff) f. Proof. intros A R Sym B R' Sym' f Hf x x' Hxx' y y' Hyy'. repeat red in Hf. split; eauto. Qed. (** A [PartialOrder] is compatible with its underlying equivalence. *) Instance PartialOrder_proper `(PartialOrder A eqA R) : Proper (eqA==>eqA==>iff) R. Proof. intros. apply proper_sym_impl_iff_2; auto with *. intros x x' Hx y y' Hy Hr. transitivity x. generalize (partial_order_equivalence x x'); compute; intuition. transitivity y; auto. generalize (partial_order_equivalence y y'); compute; intuition. Qed. (** From a [PartialOrder] to the corresponding [StrictOrder]: [lt = le /\ ~eq]. If the order is total, we could also say [gt = ~le]. *) Lemma PartialOrder_StrictOrder `(PartialOrder A eqA R) : StrictOrder (relation_conjunction R (complement eqA)). Proof. split; compute. intros x (_,Hx). apply Hx, Equivalence_Reflexive. intros x y z (Hxy,Hxy') (Hyz,Hyz'). split. apply PreOrder_Transitive with y; assumption. intro Hxz. apply Hxy'. apply partial_order_antisym; auto. rewrite Hxz; auto. Qed. Hint Extern 4 (StrictOrder (relation_conjunction _ _)) => class_apply PartialOrder_StrictOrder : typeclass_instances. (** From a [StrictOrder] to the corresponding [PartialOrder]: [le = lt \/ eq]. If the order is total, we could also say [ge = ~lt]. *) Lemma StrictOrder_PreOrder `(Equivalence A eqA, StrictOrder A R, Proper _ (eqA==>eqA==>iff) R) : PreOrder (relation_disjunction R eqA). Proof. split. intros x. right. reflexivity. intros x y z [Hxy|Hxy] [Hyz|Hyz]. left. transitivity y; auto. left. rewrite <- Hyz; auto. left. rewrite Hxy; auto. right. transitivity y; auto. Qed. Hint Extern 4 (PreOrder (relation_disjunction _ _)) => class_apply StrictOrder_PreOrder : typeclass_instances. Lemma StrictOrder_PartialOrder `(Equivalence A eqA, StrictOrder A R, Proper _ (eqA==>eqA==>iff) R) : PartialOrder eqA (relation_disjunction R eqA). Proof. intros. intros x y. compute. intuition. elim (StrictOrder_Irreflexive x). transitivity y; auto. Qed. Hint Extern 4 (PartialOrder _ (relation_disjunction _ _)) => class_apply StrictOrder_PartialOrder : typeclass_instances.