(* -*- coq-prog-args: ("-emacs-U" "-nois") -*- *) (************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* DecidableEquivalence := setoid_decidable : forall x y : A, decidable (x === y). (** The [EqDec] class gives a decision procedure for a particular setoid equality. *) Class [ equiv : Equivalence A ] => EqDec := equiv_dec : forall x y : A, { x === y } + { x =/= y }. (** We define the [==] overloaded notation for deciding equality. It does not take precedence of [==] defined in the type scope, hence we can have both at the same time. *) Notation " x == y " := (equiv_dec (x :>) (y :>)) (no associativity, at level 70). Definition swap_sumbool {A B} (x : { A } + { B }) : { B } + { A } := match x with | left H => @right _ _ H | right H => @left _ _ H end. Require Import Coq.Program.Program. Open Local Scope program_scope. (** Invert the branches. *) Program Definition nequiv_dec [ EqDec A ] (x y : A) : { x =/= y } + { x === y } := swap_sumbool (x == y). (** Overloaded notation for inequality. *) Infix "=/=" := nequiv_dec (no associativity, at level 70). (** Define boolean versions, losing the logical information. *) Definition equiv_decb [ EqDec A ] (x y : A) : bool := if x == y then true else false. Definition nequiv_decb [ EqDec A ] (x y : A) : bool := negb (equiv_decb x y). Infix "==b" := equiv_decb (no associativity, at level 70). Infix "<>b" := nequiv_decb (no associativity, at level 70). (** Decidable leibniz equality instances. *) Require Import Coq.Arith.Peano_dec. (** The equiv is burried inside the setoid, but we can recover it by specifying which setoid we're talking about. *) Program Instance nat_eq_eqdec : ! EqDec nat eq := equiv_dec := eq_nat_dec. Require Import Coq.Bool.Bool. Program Instance bool_eqdec : ! EqDec bool eq := equiv_dec := bool_dec. Program Instance unit_eqdec : ! EqDec unit eq := equiv_dec x y := in_left. Next Obligation. Proof. destruct x ; destruct y. reflexivity. Qed. Program Instance prod_eqdec [ EqDec A eq, EqDec B eq ] : ! EqDec (prod A B) eq := equiv_dec x y := let '(x1, x2) := x in let '(y1, y2) := y in if x1 == y1 then if x2 == y2 then in_left else in_right else in_right. Solve Obligations using unfold complement, equiv ; program_simpl. Program Instance sum_eqdec [ EqDec A eq, EqDec B eq ] : ! EqDec (sum A B) eq := equiv_dec x y := match x, y with | inl a, inl b => if a == b then in_left else in_right | inr a, inr b => if a == b then in_left else in_right | inl _, inr _ | inr _, inl _ => in_right end. Solve Obligations using unfold complement, equiv ; program_simpl. (** Objects of function spaces with countable domains like bool have decidable equality. *) Require Import Coq.Program.FunctionalExtensionality. Program Instance bool_function_eqdec [ EqDec A eq ] : ! EqDec (bool -> A) eq := equiv_dec f g := if f true == g true then if f false == g false then in_left else in_right else in_right. Solve Obligations using try red ; unfold equiv, complement ; program_simpl. Next Obligation. Proof. extensionality x. destruct x ; auto. Qed. Require Import List. Program Instance list_eqdec [ eqa : EqDec A eq ] : ! EqDec (list A) eq := equiv_dec := fix aux (x : list A) y { struct x } := match x, y with | nil, nil => in_left | cons hd tl, cons hd' tl' => if hd == hd' then if aux tl tl' then in_left else in_right else in_right | _, _ => in_right end. Solve Obligations using unfold equiv, complement in * ; program_simpl ; intuition (discriminate || eauto). Next Obligation. Proof. clear aux. red in H0. subst. destruct y; intuition (discriminate || eauto). Defined.