(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* nat. Definition ltof (a b:A) := f a < f b. Definition gtof (a b:A) := f b > f a. Theorem well_founded_ltof : well_founded ltof. Proof. red in |- *. cut (forall n (a:A), f a < n -> Acc ltof a). intros H a; apply (H (S (f a))); auto with arith. induction n. intros; absurd (f a < 0); auto with arith. intros a ltSma. apply Acc_intro. unfold ltof in |- *; intros b ltfafb. apply IHn. apply lt_le_trans with (f a); auto with arith. Defined. Theorem well_founded_gtof : well_founded gtof. Proof. exact well_founded_ltof. Defined. (** It is possible to directly prove the induction principle going back to primitive recursion on natural numbers ([induction_ltof1]) or to use the previous lemmas to extract a program with a fixpoint ([induction_ltof2]) the ML-like program for [induction_ltof1] is : [[ let induction_ltof1 F a = indrec ((f a)+1) a where rec indrec = function 0 -> (function a -> error) |(S m) -> (function a -> (F a (function y -> indrec y m)));; ]] the ML-like program for [induction_ltof2] is : [[ let induction_ltof2 F a = indrec a where rec indrec a = F a indrec;; ]] *) Theorem induction_ltof1 : forall P:A -> Set, (forall x:A, (forall y:A, ltof y x -> P y) -> P x) -> forall a:A, P a. Proof. intros P F; cut (forall n (a:A), f a < n -> P a). intros H a; apply (H (S (f a))); auto with arith. induction n. intros; absurd (f a < 0); auto with arith. intros a ltSma. apply F. unfold ltof in |- *; intros b ltfafb. apply IHn. apply lt_le_trans with (f a); auto with arith. Defined. Theorem induction_gtof1 : forall P:A -> Set, (forall x:A, (forall y:A, gtof y x -> P y) -> P x) -> forall a:A, P a. Proof. exact induction_ltof1. Defined. Theorem induction_ltof2 : forall P:A -> Set, (forall x:A, (forall y:A, ltof y x -> P y) -> P x) -> forall a:A, P a. Proof. exact (well_founded_induction well_founded_ltof). Defined. Theorem induction_gtof2 : forall P:A -> Set, (forall x:A, (forall y:A, gtof y x -> P y) -> P x) -> forall a:A, P a. Proof. exact induction_ltof2. Defined. (** If a relation [R] is compatible with [lt] i.e. if [x R y => f(x) < f(y)] then [R] is well-founded. *) Variable R : A -> A -> Prop. Hypothesis H_compat : forall x y:A, R x y -> f x < f y. Theorem well_founded_lt_compat : well_founded R. Proof. red in |- *. cut (forall n (a:A), f a < n -> Acc R a). intros H a; apply (H (S (f a))); auto with arith. induction n. intros; absurd (f a < 0); auto with arith. intros a ltSma. apply Acc_intro. intros b ltfafb. apply IHn. apply lt_le_trans with (f a); auto with arith. Defined. End Well_founded_Nat. Lemma lt_wf : well_founded lt. Proof. exact (well_founded_ltof nat (fun m => m)). Defined. Lemma lt_wf_rec1 : forall n (P:nat -> Set), (forall n, (forall m, m < n -> P m) -> P n) -> P n. Proof. exact (fun p P F => induction_ltof1 nat (fun m => m) P F p). Defined. Lemma lt_wf_rec : forall n (P:nat -> Set), (forall n, (forall m, m < n -> P m) -> P n) -> P n. Proof. exact (fun p P F => induction_ltof2 nat (fun m => m) P F p). Defined. Lemma lt_wf_ind : forall n (P:nat -> Prop), (forall n, (forall m, m < n -> P m) -> P n) -> P n. Proof. intro p; intros; elim (lt_wf p); auto with arith. Qed. Lemma gt_wf_rec : forall n (P:nat -> Set), (forall n, (forall m, n > m -> P m) -> P n) -> P n. Proof. exact lt_wf_rec. Defined. Lemma gt_wf_ind : forall n (P:nat -> Prop), (forall n, (forall m, n > m -> P m) -> P n) -> P n. Proof lt_wf_ind. Lemma lt_wf_double_rec : forall P:nat -> nat -> Set, (forall n m, (forall p q, p < n -> P p q) -> (forall p, p < m -> P n p) -> P n m) -> forall n m, P n m. Proof. intros P Hrec p; pattern p in |- *; apply lt_wf_rec. intros n H q; pattern q in |- *; apply lt_wf_rec; auto with arith. Defined. Lemma lt_wf_double_ind : forall P:nat -> nat -> Prop, (forall n m, (forall p (q:nat), p < n -> P p q) -> (forall p, p < m -> P n p) -> P n m) -> forall n m, P n m. Proof. intros P Hrec p; pattern p in |- *; apply lt_wf_ind. intros n H q; pattern q in |- *; apply lt_wf_ind; auto with arith. Qed. Hint Resolve lt_wf: arith. Hint Resolve well_founded_lt_compat: arith. Section LT_WF_REL. Variable A : Set. Variable R : A -> A -> Prop. (* Relational form of inversion *) Variable F : A -> nat -> Prop. Definition inv_lt_rel x y := exists2 n, F x n & (forall m, F y m -> n < m). Hypothesis F_compat : forall x y:A, R x y -> inv_lt_rel x y. Remark acc_lt_rel : forall x:A, (exists n, F x n) -> Acc R x. Proof. intros x [n fxn]; generalize dependent x. pattern n in |- *; apply lt_wf_ind; intros. constructor; intros. destruct (F_compat y x) as (x0,H1,H2); trivial. apply (H x0); auto. Qed. Theorem well_founded_inv_lt_rel_compat : well_founded R. Proof. constructor; intros. case (F_compat y a); trivial; intros. apply acc_lt_rel; trivial. exists x; trivial. Qed. End LT_WF_REL. Lemma well_founded_inv_rel_inv_lt_rel : forall (A:Set) (F:A -> nat -> Prop), well_founded (inv_lt_rel A F). intros; apply (well_founded_inv_lt_rel_compat A (inv_lt_rel A F) F); trivial. Qed.