(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* m}. Proof. induction n; destruct m; auto. elim (IHn m); auto. Defined. Hint Resolve O_or_S eq_nat_dec: arith. Theorem dec_eq_nat : forall n m, decidable (n = m). intros x y; unfold decidable; elim (eq_nat_dec x y); auto with arith. Defined. Definition UIP_nat:= Eqdep_dec.UIP_dec eq_nat_dec. Lemma le_unique: forall m n (h1 h2: m <= n), h1 = h2. Proof. fix 3. refine (fun m _ h1 => match h1 as h' in _ <= k return forall hh: m <= k, h' = hh with le_n => _ |le_S i H => _ end). refine (fun hh => match hh as h' in _ <= k return forall eq: m = k, le_n m = match eq in _ = p return m <= p -> m <= m with |eq_refl => fun bli => bli end h' with |le_n => fun eq => _ |le_S j H' => fun eq => _ end eq_refl). rewrite (UIP_nat _ _ eq eq_refl). reflexivity. subst m. destruct (Lt.lt_irrefl j H'). refine (fun hh => match hh as h' in _ <= k return match k as k' return m <= k' -> Prop with |0 => fun _ => True |S i' => fun h'' => forall H':m <= i', le_S m i' H' = h'' end h' with |le_n => _ |le_S j H2 => fun H' => _ end H). destruct m. exact I. intros; destruct (Lt.lt_irrefl m H'). f_equal. apply le_unique. Qed.