(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* n = 0 \/ m = 0. Proof. destruct n as [| n]. intros; left; trivial. simpl; intros m H; right. assert (H':m = 0 /\ n * m = 0) by apply (plus_is_O _ _ H). destruct H'; trivial. Qed. Lemma mult_is_one : forall n m, n * m = 1 -> n = 1 /\ m = 1. Proof. destruct n as [|n]. simpl; intros m H; elim (O_S _ H). simpl; intros m H. destruct (plus_is_one _ _ H) as [[Hm Hnm] | [Hm Hnm]]. rewrite Hm in H; simpl in H; rewrite mult_0_r in H; elim (O_S _ H). rewrite Hm in Hnm; rewrite mult_1_r in Hnm; auto. Qed. (** ** Multiplication and successor *) Lemma mult_succ_l : forall n m:nat, S n * m = n * m + m. Proof. intros; simpl. rewrite plus_comm. reflexivity. Qed. Lemma mult_succ_r : forall n m:nat, n * S m = n * m + n. Proof. induction n as [| p H]; intro m; simpl. reflexivity. rewrite H, <- plus_n_Sm; apply f_equal; rewrite plus_assoc; reflexivity. Qed. (** * Compatibility with orders *) Lemma mult_O_le : forall n m, m = 0 \/ n <= m * n. Proof. induction m; simpl in |- *; auto with arith. Qed. Hint Resolve mult_O_le: arith v62. Lemma mult_le_compat_l : forall n m p, n <= m -> p * n <= p * m. Proof. induction p as [| p IHp]. intros. simpl in |- *. apply le_n. intros. simpl in |- *. apply plus_le_compat. assumption. apply IHp. assumption. Qed. Hint Resolve mult_le_compat_l: arith. Lemma mult_le_compat_r : forall n m p, n <= m -> n * p <= m * p. Proof. intros m n p H. rewrite mult_comm. rewrite (mult_comm n). auto with arith. Qed. Lemma mult_le_compat : forall n m p (q:nat), n <= m -> p <= q -> n * p <= m * q. Proof. intros m n p q Hmn Hpq; induction Hmn. induction Hpq. (* m*p<=m*p *) apply le_n. (* m*p<=m*m0 -> m*p<=m*(S m0) *) rewrite <- mult_n_Sm; apply le_trans with (m * m0). assumption. apply le_plus_l. (* m*p<=m0*q -> m*p<=(S m0)*q *) simpl in |- *; apply le_trans with (m0 * q). assumption. apply le_plus_r. Qed. Lemma mult_S_lt_compat_l : forall n m p, m < p -> S n * m < S n * p. Proof. intro m; induction m. intros. simpl in |- *. rewrite <- plus_n_O. rewrite <- plus_n_O. assumption. intros. exact (plus_lt_compat _ _ _ _ H (IHm _ _ H)). Qed. Hint Resolve mult_S_lt_compat_l: arith. Lemma mult_lt_compat_r : forall n m p, n < m -> 0 < p -> n * p < m * p. Proof. intros m n p H H0. induction p. elim (lt_irrefl _ H0). rewrite mult_comm. replace (n * S p) with (S p * n); auto with arith. Qed. Lemma mult_S_le_reg_l : forall n m p, S n * m <= S n * p -> m <= p. Proof. intros m n p H. elim (le_or_lt n p). trivial. intro H0. cut (S m * n < S m * n). intro. elim (lt_irrefl _ H1). apply le_lt_trans with (m := S m * p). assumption. apply mult_S_lt_compat_l. assumption. Qed. (** * n|->2*n and n|->2n+1 have disjoint image *) Theorem odd_even_lem : forall p q, 2 * p + 1 <> 2 * q. Proof. intros p; elim p; auto. intros q; case q; simpl in |- *. red in |- *; intros; discriminate. intros q'; rewrite (fun x y => plus_comm x (S y)); simpl in |- *; red in |- *; intros; discriminate. intros p' H q; case q. simpl in |- *; red in |- *; intros; discriminate. intros q'; red in |- *; intros H0; case (H q'). replace (2 * q') with (2 * S q' - 2). rewrite <- H0; simpl in |- *; auto. repeat rewrite (fun x y => plus_comm x (S y)); simpl in |- *; auto. simpl in |- *; repeat rewrite (fun x y => plus_comm x (S y)); simpl in |- *; auto. case q'; simpl in |- *; auto. Qed. (** * Tail-recursive mult *) (** [tail_mult] is an alternative definition for [mult] which is tail-recursive, whereas [mult] is not. This can be useful when extracting programs. *) Fixpoint mult_acc (s:nat) m n {struct n} : nat := match n with | O => s | S p => mult_acc (tail_plus m s) m p end. Lemma mult_acc_aux : forall n m p, m + n * p = mult_acc m p n. Proof. induction n as [| p IHp]; simpl in |- *; auto. intros s m; rewrite <- plus_tail_plus; rewrite <- IHp. rewrite <- plus_assoc_reverse; apply (f_equal2 (A1:=nat) (A2:=nat)); auto. rewrite plus_comm; auto. Qed. Definition tail_mult n m := mult_acc 0 m n. Lemma mult_tail_mult : forall n m, n * m = tail_mult n m. Proof. intros; unfold tail_mult in |- *; rewrite <- mult_acc_aux; auto. Qed. (** [TailSimpl] transforms any [tail_plus] and [tail_mult] into [plus] and [mult] and simplify *) Ltac tail_simpl := repeat rewrite <- plus_tail_plus; repeat rewrite <- mult_tail_mult; simpl in |- *.