(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* n | S k, O => S k | S k, S l => k - l end where "n - m" := (minus n m) : nat_scope. >> *) Require Import Lt. Require Import Le. Local Open Scope nat_scope. Implicit Types m n p : nat. (** * 0 is right neutral *) Lemma minus_n_O : forall n, n = n - 0. Proof. induction n; simpl; auto with arith. Qed. Hint Resolve minus_n_O: arith v62. (** * Permutation with successor *) Lemma minus_Sn_m : forall n m, m <= n -> S (n - m) = S n - m. Proof. intros n m Le; pattern m, n; apply le_elim_rel; simpl; auto with arith. Qed. Hint Resolve minus_Sn_m: arith v62. Theorem pred_of_minus : forall n, pred n = n - 1. Proof. intro x; induction x; simpl; auto with arith. Qed. (** * Diagonal *) Lemma minus_diag : forall n, n - n = 0. Proof. induction n; simpl; auto with arith. Qed. Lemma minus_diag_reverse : forall n, 0 = n - n. Proof. auto using minus_diag. Qed. Hint Resolve minus_diag_reverse: arith v62. Notation minus_n_n := minus_diag_reverse. (** * Simplification *) Lemma minus_plus_simpl_l_reverse : forall n m p, n - m = p + n - (p + m). Proof. induction p; simpl; auto with arith. Qed. Hint Resolve minus_plus_simpl_l_reverse: arith v62. (** * Relation with plus *) Lemma plus_minus : forall n m p, n = m + p -> p = n - m. Proof. intros n m p; pattern m, n; apply nat_double_ind; simpl; intros. replace (n0 - 0) with n0; auto with arith. absurd (0 = S (n0 + p)); auto with arith. auto with arith. Qed. Hint Immediate plus_minus: arith v62. Lemma minus_plus : forall n m, n + m - n = m. symmetry ; auto with arith. Qed. Hint Resolve minus_plus: arith v62. Lemma le_plus_minus : forall n m, n <= m -> m = n + (m - n). Proof. intros n m Le; pattern n, m; apply le_elim_rel; simpl; auto with arith. Qed. Hint Resolve le_plus_minus: arith v62. Lemma le_plus_minus_r : forall n m, n <= m -> n + (m - n) = m. Proof. symmetry ; auto with arith. Qed. Hint Resolve le_plus_minus_r: arith v62. (** * Relation with order *) Theorem minus_le_compat_r : forall n m p : nat, n <= m -> n - p <= m - p. Proof. intros n m p; generalize n m; clear n m; induction p as [|p HI]. intros n m; rewrite <- (minus_n_O n); rewrite <- (minus_n_O m); trivial. intros n m Hnm; apply le_elim_rel with (n:=n) (m:=m); auto with arith. intros q r H _. simpl. auto using HI. Qed. Theorem minus_le_compat_l : forall n m p : nat, n <= m -> p - m <= p - n. Proof. intros n m p; generalize n m; clear n m; induction p as [|p HI]. trivial. intros n m Hnm; apply le_elim_rel with (n:=n) (m:=m); trivial. intros q; destruct q; auto with arith. simpl. apply le_trans with (m := p - 0); [apply HI | rewrite <- minus_n_O]; auto with arith. intros q r Hqr _. simpl. auto using HI. Qed. Corollary le_minus : forall n m, n - m <= n. Proof. intros n m; rewrite minus_n_O; auto using minus_le_compat_l with arith. Qed. Lemma lt_minus : forall n m, m <= n -> 0 < m -> n - m < n. Proof. intros n m Le; pattern m, n; apply le_elim_rel; simpl; auto using le_minus with arith. intros; absurd (0 < 0); auto with arith. Qed. Hint Resolve lt_minus: arith v62. Lemma lt_O_minus_lt : forall n m, 0 < n - m -> m < n. Proof. intros n m; pattern n, m; apply nat_double_ind; simpl; auto with arith. intros; absurd (0 < 0); trivial with arith. Qed. Hint Immediate lt_O_minus_lt: arith v62. Theorem not_le_minus_0 : forall n m, ~ m <= n -> n - m = 0. Proof. intros y x; pattern y, x; apply nat_double_ind; [ simpl; trivial with arith | intros n H; absurd (0 <= S n); [ assumption | apply le_O_n ] | simpl; intros n m H1 H2; apply H1; unfold not; intros H3; apply H2; apply le_n_S; assumption ]. Qed.