(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* 0 | S n', O => 0 | S n', S m' => S (min n' m') end. (** * Simplifications of [min] *) Lemma min_SS : forall n m, S (min n m) = min (S n) (S m). Proof. auto with arith. Qed. Lemma min_comm : forall n m, min n m = min m n. Proof. induction n; induction m; simpl in |- *; auto with arith. Qed. (** * [min] and [le] *) Lemma min_l : forall n m, n <= m -> min n m = n. Proof. induction n; induction m; simpl in |- *; auto with arith. Qed. Lemma min_r : forall n m, m <= n -> min n m = m. Proof. induction n; induction m; simpl in |- *; auto with arith. Qed. Lemma le_min_l : forall n m, min n m <= n. Proof. induction n; intros; simpl in |- *; auto with arith. elim m; intros; simpl in |- *; auto with arith. Qed. Lemma le_min_r : forall n m, min n m <= m. Proof. induction n; simpl in |- *; auto with arith. induction m; simpl in |- *; auto with arith. Qed. Hint Resolve min_l min_r le_min_l le_min_r: arith v62. (** * [min n m] is equal to [n] or [m] *) Lemma min_dec : forall n m, {min n m = n} + {min n m = m}. Proof. induction n; induction m; simpl in |- *; auto with arith. elim (IHn m); intro H; elim H; auto. Qed. Lemma min_case : forall n m (P:nat -> Type), P n -> P m -> P (min n m). Proof. induction n; simpl in |- *; auto with arith. induction m; intros; simpl in |- *; auto with arith. pattern (min n m) in |- *; apply IHn; auto with arith. Qed. Notation min_case2 := min_case (only parsing).