(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* True | O, S _ => False | S _, O => False | S n1, S m1 => eq_nat n1 m1 end. Theorem eq_nat_refl : forall n, eq_nat n n. induction n; simpl in |- *; auto. Qed. Hint Resolve eq_nat_refl: arith v62. (** [eq] restricted to [nat] and [eq_nat] are equivalent *) Lemma eq_eq_nat : forall n m, n = m -> eq_nat n m. induction 1; trivial with arith. Qed. Hint Immediate eq_eq_nat: arith v62. Lemma eq_nat_eq : forall n m, eq_nat n m -> n = m. induction n; induction m; simpl in |- *; contradiction || auto with arith. Qed. Hint Immediate eq_nat_eq: arith v62. Theorem eq_nat_is_eq : forall n m, eq_nat n m <-> n = m. Proof. split; auto with arith. Qed. Theorem eq_nat_elim : forall n (P:nat -> Prop), P n -> forall m, eq_nat n m -> P m. Proof. intros; replace m with n; auto with arith. Qed. Theorem eq_nat_decide : forall n m, {eq_nat n m} + {~ eq_nat n m}. Proof. induction n. destruct m as [| n]. auto with arith. intros; right; red in |- *; trivial with arith. destruct m as [| n0]. right; red in |- *; auto with arith. intros. simpl in |- *. apply IHn. Defined. (** * Boolean equality on [nat] *) Fixpoint beq_nat n m : bool := match n, m with | O, O => true | O, S _ => false | S _, O => false | S n1, S m1 => beq_nat n1 m1 end. Lemma beq_nat_refl : forall n, true = beq_nat n n. Proof. intro x; induction x; simpl in |- *; auto. Qed. Definition beq_nat_eq : forall x y, true = beq_nat x y -> x = y. Proof. double induction x y; simpl in |- *. reflexivity. intros n H1 H2. discriminate H2. intros n H1 H2. discriminate H2. intros n H1 z H2 H3. case (H2 _ H3). reflexivity. Defined. Lemma beq_nat_true : forall x y, beq_nat x y = true -> x=y. Proof. induction x; destruct y; simpl; auto; intros; discriminate. Qed. Lemma beq_nat_false : forall x y, beq_nat x y = false -> x<>y. Proof. induction x; destruct y; simpl; auto; intros; discriminate. Qed. Lemma beq_nat_true_iff : forall x y, beq_nat x y = true <-> x=y. Proof. split. apply beq_nat_true. intros; subst; symmetry; apply beq_nat_refl. Qed. Lemma beq_nat_false_iff : forall x y, beq_nat x y = false <-> x<>y. Proof. intros x y. split. apply beq_nat_false. generalize (beq_nat_true_iff x y). destruct beq_nat; auto. intros IFF NEQ. elim NEQ. apply IFF; auto. Qed.