(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* n} + {n = m} + {n > m}. exact lt_eq_lt_dec. Defined. Definition le_lt_dec n m : {n <= m} + {m < n}. induction n. auto with arith. induction m. auto with arith. elim (IHn m); auto with arith. Defined. Definition le_le_S_dec n m : {n <= m} + {S m <= n}. exact le_lt_dec. Defined. Definition le_ge_dec n m : {n <= m} + {n >= m}. intros; elim (le_lt_dec n m); auto with arith. Defined. Definition le_gt_dec n m : {n <= m} + {n > m}. exact le_lt_dec. Defined. Definition le_lt_eq_dec n m : n <= m -> {n < m} + {n = m}. intros; elim (lt_eq_lt_dec n m); auto with arith. intros; absurd (m < n); auto with arith. Defined. (** Proofs of decidability *) Theorem dec_le : forall n m, decidable (n <= m). Proof. intros x y; unfold decidable in |- *; elim (le_gt_dec x y); [ auto with arith | intro; right; apply gt_not_le; assumption ]. Qed. Theorem dec_lt : forall n m, decidable (n < m). Proof. intros x y; unfold lt in |- *; apply dec_le. Qed. Theorem dec_gt : forall n m, decidable (n > m). Proof. intros x y; unfold gt in |- *; apply dec_lt. Qed. Theorem dec_ge : forall n m, decidable (n >= m). Proof. intros x y; unfold ge in |- *; apply dec_le. Qed. Theorem not_eq : forall n m, n <> m -> n < m \/ m < n. Proof. intros x y H; elim (lt_eq_lt_dec x y); [ intros H1; elim H1; [ auto with arith | intros H2; absurd (x = y); assumption ] | auto with arith ]. Qed. Theorem not_le : forall n m, ~ n <= m -> n > m. Proof. intros x y H; elim (le_gt_dec x y); [ intros H1; absurd (x <= y); assumption | trivial with arith ]. Qed. Theorem not_gt : forall n m, ~ n > m -> n <= m. Proof. intros x y H; elim (le_gt_dec x y); [ trivial with arith | intros H1; absurd (x > y); assumption ]. Qed. Theorem not_ge : forall n m, ~ n >= m -> n < m. Proof. intros x y H; exact (not_le y x H). Qed. Theorem not_lt : forall n m, ~ n < m -> n >= m. Proof. intros x y H; exact (not_gt y x H). Qed. (** A ternary comparison function in the spirit of [Zcompare]. *) Definition nat_compare (n m:nat) := match lt_eq_lt_dec n m with | inleft (left _) => Lt | inleft (right _) => Eq | inright _ => Gt end. Lemma nat_compare_S : forall n m, nat_compare (S n) (S m) = nat_compare n m. Proof. unfold nat_compare; intros. simpl; destruct (lt_eq_lt_dec n m) as [[H|H]|H]; simpl; auto. Qed. Lemma nat_compare_eq : forall n m, nat_compare n m = Eq -> n = m. Proof. induction n; destruct m; simpl; auto. unfold nat_compare; destruct (lt_eq_lt_dec 0 (S m)) as [[H|H]|H]; auto; intros; try discriminate. unfold nat_compare; destruct (lt_eq_lt_dec (S n) 0) as [[H|H]|H]; auto; intros; try discriminate. rewrite nat_compare_S; auto. Qed. Lemma nat_compare_lt : forall n m, n nat_compare n m = Lt. Proof. induction n; destruct m; simpl. unfold nat_compare; simpl; intuition; [inversion H | discriminate H]. split; auto with arith. split; [inversion 1 |]. unfold nat_compare; destruct (lt_eq_lt_dec (S n) 0) as [[H|H]|H]; auto; intros; try discriminate. rewrite nat_compare_S. generalize (IHn m); clear IHn; intuition. Qed. Lemma nat_compare_gt : forall n m, n>m <-> nat_compare n m = Gt. Proof. induction n; destruct m; simpl. unfold nat_compare; simpl; intuition; [inversion H | discriminate H]. split; [inversion 1 |]. unfold nat_compare; destruct (lt_eq_lt_dec 0 (S m)) as [[H|H]|H]; auto; intros; try discriminate. split; auto with arith. rewrite nat_compare_S. generalize (IHn m); clear IHn; intuition. Qed. Lemma nat_compare_le : forall n m, n<=m <-> nat_compare n m <> Gt. Proof. split. intros. intro. destruct (nat_compare_gt n m). generalize (le_lt_trans _ _ _ H (H2 H0)). exact (lt_irrefl n). intros. apply not_gt. swap H. destruct (nat_compare_gt n m); auto. Qed. Lemma nat_compare_ge : forall n m, n>=m <-> nat_compare n m <> Lt. Proof. split. intros. intro. destruct (nat_compare_lt n m). generalize (le_lt_trans _ _ _ H (H2 H0)). exact (lt_irrefl m). intros. apply not_lt. swap H. destruct (nat_compare_lt n m); auto. Qed. (** A boolean version of [le] over [nat]. *) Fixpoint leb (m:nat) : nat -> bool := match m with | O => fun _:nat => true | S m' => fun n:nat => match n with | O => false | S n' => leb m' n' end end. Lemma leb_correct : forall m n:nat, m <= n -> leb m n = true. Proof. induction m as [| m IHm]. trivial. destruct n. intro H. elim (le_Sn_O _ H). intros. simpl in |- *. apply IHm. apply le_S_n. assumption. Qed. Lemma leb_complete : forall m n:nat, leb m n = true -> m <= n. Proof. induction m. trivial with arith. destruct n. intro H. discriminate H. auto with arith. Qed. Lemma leb_correct_conv : forall m n:nat, m < n -> leb n m = false. Proof. intros. generalize (leb_complete n m). destruct (leb n m); auto. intros. elim (lt_irrefl _ (lt_le_trans _ _ _ H (H0 (refl_equal true)))). Qed. Lemma leb_complete_conv : forall m n:nat, leb n m = false -> m < n. Proof. intros. elim (le_or_lt n m). intro. conditional trivial rewrite leb_correct in H. discriminate H. trivial. Qed. Lemma leb_compare : forall n m, leb n m = true <-> nat_compare n m <> Gt. Proof. induction n; destruct m; simpl. unfold nat_compare; simpl. intuition; discriminate. split; auto with arith. unfold nat_compare; destruct (lt_eq_lt_dec 0 (S m)) as [[H|H]|H]; intuition; try discriminate. inversion H. split; try (intros; discriminate). unfold nat_compare; destruct (lt_eq_lt_dec (S n) 0) as [[H|H]|H]; intuition; try discriminate. inversion H. rewrite nat_compare_S; auto. Qed.