(************************************************************************) (* v * The Coq Proof Assistant / The Coq Development Team *) (* Prop. Inductive between k : nat -> Prop := | bet_emp : between k k | bet_S : forall l, between k l -> P l -> between k (S l). Hint Constructors between: arith. Lemma bet_eq : forall k l, l = k -> between k l. Proof. induction 1; auto with arith. Qed. Hint Resolve bet_eq: arith. Lemma between_le : forall k l, between k l -> k <= l. Proof. induction 1; auto with arith. Qed. Hint Immediate between_le: arith. Lemma between_Sk_l : forall k l, between k l -> S k <= l -> between (S k) l. Proof. intros k l H; induction H as [|l H]. intros; absurd (S k <= k); auto with arith. destruct H; auto with arith. Qed. Hint Resolve between_Sk_l: arith. Lemma between_restr : forall k l (m:nat), k <= l -> l <= m -> between k m -> between l m. Proof. induction 1; auto with arith. Qed. Inductive exists_between k : nat -> Prop := | exists_S : forall l, exists_between k l -> exists_between k (S l) | exists_le : forall l, k <= l -> Q l -> exists_between k (S l). Hint Constructors exists_between: arith. Lemma exists_le_S : forall k l, exists_between k l -> S k <= l. Proof. induction 1; auto with arith. Qed. Lemma exists_lt : forall k l, exists_between k l -> k < l. Proof exists_le_S. Hint Immediate exists_le_S exists_lt: arith. Lemma exists_S_le : forall k l, exists_between k (S l) -> k <= l. Proof. intros; apply le_S_n; auto with arith. Qed. Hint Immediate exists_S_le: arith. Definition in_int p q r := p <= r /\ r < q. Lemma in_int_intro : forall p q r, p <= r -> r < q -> in_int p q r. Proof. red; auto with arith. Qed. Hint Resolve in_int_intro: arith. Lemma in_int_lt : forall p q r, in_int p q r -> p < q. Proof. induction 1; intros. apply le_lt_trans with r; auto with arith. Qed. Lemma in_int_p_Sq : forall p q r, in_int p (S q) r -> in_int p q r \/ r = q :>nat. Proof. induction 1; intros. elim (le_lt_or_eq r q); auto with arith. Qed. Lemma in_int_S : forall p q r, in_int p q r -> in_int p (S q) r. Proof. induction 1; auto with arith. Qed. Hint Resolve in_int_S: arith. Lemma in_int_Sp_q : forall p q r, in_int (S p) q r -> in_int p q r. Proof. induction 1; auto with arith. Qed. Hint Immediate in_int_Sp_q: arith. Lemma between_in_int : forall k l, between k l -> forall r, in_int k l r -> P r. Proof. induction 1; intros. absurd (k < k); auto with arith. apply in_int_lt with r; auto with arith. elim (in_int_p_Sq k l r); intros; auto with arith. rewrite H2; trivial with arith. Qed. Lemma in_int_between : forall k l, k <= l -> (forall r, in_int k l r -> P r) -> between k l. Proof. induction 1; auto with arith. Qed. Lemma exists_in_int : forall k l, exists_between k l -> exists2 m : nat, in_int k l m & Q m. Proof. induction 1. case IHexists_between; intros p inp Qp; exists p; auto with arith. exists l; auto with arith. Qed. Lemma in_int_exists : forall k l r, in_int k l r -> Q r -> exists_between k l. Proof. destruct 1; intros. elim H0; auto with arith. Qed. Lemma between_or_exists : forall k l, k <= l -> (forall n:nat, in_int k l n -> P n \/ Q n) -> between k l \/ exists_between k l. Proof. induction 1; intros; auto with arith. elim IHle; intro; auto with arith. elim (H0 m); auto with arith. Qed. Lemma between_not_exists : forall k l, between k l -> (forall n:nat, in_int k l n -> P n -> ~ Q n) -> ~ exists_between k l. Proof. induction 1; red; intros. absurd (k < k); auto with arith. absurd (Q l); auto with arith. elim (exists_in_int k (S l)); auto with arith; intros l' inl' Ql'. replace l with l'; auto with arith. elim inl'; intros. elim (le_lt_or_eq l' l); auto with arith; intros. absurd (exists_between k l); auto with arith. apply in_int_exists with l'; auto with arith. Qed. Inductive P_nth (init:nat) : nat -> nat -> Prop := | nth_O : P_nth init init 0 | nth_S : forall k l (n:nat), P_nth init k n -> between (S k) l -> Q l -> P_nth init l (S n). Lemma nth_le : forall (init:nat) l (n:nat), P_nth init l n -> init <= l. Proof. induction 1; intros; auto with arith. apply le_trans with (S k); auto with arith. Qed. Definition eventually (n:nat) := exists2 k : nat, k <= n & Q k. Lemma event_O : eventually 0 -> Q 0. Proof. induction 1; intros. replace 0 with x; auto with arith. Qed. End Between. Hint Resolve nth_O bet_S bet_emp bet_eq between_Sk_l exists_S exists_le in_int_S in_int_intro: arith. Hint Immediate in_int_Sp_q exists_le_S exists_S_le: arith.