(* Check that dependent rewrite applies on arbitrary terms *) Inductive listn : nat -> Set := | niln : listn 0 | consn : forall n : nat, nat -> listn n -> listn (S n). Axiom ax : forall (n n' : nat) (l : listn (n + n')) (l' : listn (n' + n)), existS _ (n + n') l = existS _ (n' + n) l'. Lemma lem : forall (n n' : nat) (l : listn (n + n')) (l' : listn (n' + n)), n + n' = n' + n /\ existT _ (n + n') l = existT _ (n' + n) l'. Proof. intros n n' l l'. dependent rewrite (ax n n' l l'). split; reflexivity. Qed.