(* The "?" of cons and eq should be inferred *) Variable list : Set -> Set. Variable cons : forall T : Set, T -> list T -> list T. Check (forall n : list nat, exists l : _, (exists x : _, n = cons _ x l)). (* Examples provided by Eduardo Gimenez *) Definition c A (Q : (nat * A -> Prop) -> Prop) P := Q (fun p : nat * A => let (i, v) := p in P i v). (* What does this test ? *) Require Import List. Definition list_forall_bool (A : Set) (p : A -> bool) (l : list A) : bool := fold_right (fun a r => if p a then r else false) true l. (* Checks that solvable ? in the lambda prefix of the definition are harmless*) Parameter A1 A2 F B C : Set. Parameter f : F -> A1 -> B. Definition f1 frm0 a1 : B := f frm0 a1. (* Checks that solvable ? in the type part of the definition are harmless *) Definition f2 frm0 a1 : B := f frm0 a1. (* Checks that sorts that are evars are handled correctly (BZ#705) *) Require Import List. Fixpoint build (nl : list nat) : match nl with | nil => True | _ => False end -> unit := match nl return (match nl with | nil => True | _ => False end -> unit) with | nil => fun _ => tt | n :: rest => match n with | O => fun _ => tt | S m => fun a => build rest (False_ind _ a) end end. (* Checks that disjoint contexts are correctly set by restrict_hyp *) (* Bug de 1999 corrigé en déc 2004 *) Check (let p := fun (m : nat) f (n : nat) => match f m n with | exist _ a b => exist _ a b end in p :forall x : nat, (forall y n : nat, {q : nat | y = q * n}) -> forall n : nat, {q : nat | x = q * n}). (* Check instantiation of nested evars (BZ#1089) *) Check (fun f:(forall (v:Type->Type), v (v nat) -> nat) => f _ (Some (Some O))). (* This used to fail with anomaly (Pp.str "evar was not declared.") in V8.0pl3 *) Theorem contradiction : forall p, ~ p -> p -> False. Proof. trivial. Qed. Hint Resolve contradiction. Goal False. eauto. Abort. (* This used to fail in V8.1beta because first-order unification was used before using type information *) Check (exist _ O (refl_equal 0) : {n:nat|n=0}). Check (exist _ O I : {n:nat|True}). (* An example (initially from Marseille/Fairisle) that involves an evar with different solutions (Input, Output or bool) that may or may not be considered distinct depending on which kind of conversion is used *) Section A. Definition STATE := (nat * bool)%type. Let Input := bool. Let Output := bool. Parameter Out : STATE -> Output. Check fun (s : STATE) (reg : Input) => reg = Out s. End A. (* The return predicate found should be: "in _=U return U" *) (* (feature already available in V8.0) *) Definition g (T1 T2:Type) (x:T1) (e:T1=T2) : T2 := match e with | refl_equal => x end. (* An example extracted from FMapAVL which (may) test restriction on evars problems of the form ?n[args1]=?n[args2] with distinct args1 and args2 *) Set Implicit Arguments. Parameter t:Set->Set. Parameter map:forall elt elt' : Set, (elt -> elt') -> t elt -> t elt'. Parameter avl: forall elt : Set, t elt -> Prop. Parameter bst: forall elt : Set, t elt -> Prop. Parameter map_avl: forall (elt elt' : Set) (f : elt -> elt') (m : t elt), avl m -> avl (map f m). Parameter map_bst: forall (elt elt' : Set) (f : elt -> elt') (m : t elt), bst m -> bst (map f m). Record bbst (elt:Set) : Set := Bbst {this :> t elt; is_bst : bst this; is_avl: avl this}. Definition t' := bbst. Section B. Variables elt elt': Set. Definition map' f (m:t' elt) : t' elt' := Bbst (map_bst f m.(is_bst)) (map_avl f m.(is_avl)). End B. Unset Implicit Arguments. (* An example from Lexicographic_Exponentiation that tests the contraction of reducible fixpoints in type inference *) Require Import List. Check (fun (A:Set) (a b x:A) (l:list A) (H : l ++ cons x nil = cons b (cons a nil)) => app_inj_tail l (cons b nil) _ _ H). (* An example from NMake (simplified), that uses restriction in solve_refl *) Parameter h:(nat->nat)->(nat->nat). Fixpoint G p cont {struct p} := h (fun n => match p with O => cont | S p => G p cont end n). (* An example from Bordeaux/Cantor that applies evar restriction below a binder *) Require Import Relations. Parameter lex : forall (A B : Set), (forall (a1 a2:A), {a1=a2}+{a1<>a2}) -> relation A -> relation B -> A * B -> A * B -> Prop. Check forall (A B : Set) eq_A_dec o1 o2, antisymmetric A o1 -> transitive A o1 -> transitive B o2 -> transitive _ (lex _ _ eq_A_dec o1 o2). (* Another example from Julien Forest that tests unification below binders *) Require Import List. Set Implicit Arguments. Parameter merge : forall (A B : Set) (eqA : forall (a1 a2 : A), {a1=a2}+{a1<>a2}) (eqB : forall (b1 b2 : B), {b1=b2}+{b1<>b2}) (partial_res l : list (A*B)), option (list (A*B)). Axiom merge_correct : forall (A B : Set) eqA eqB (l1 l2 : list (A*B)), (forall a2 b2 c2, In (a2,b2) l2 -> In (a2,c2) l2 -> b2 = c2) -> match merge eqA eqB l1 l2 with _ => True end. Unset Implicit Arguments. (* An example from Bordeaux/Additions that tests restriction below binders *) Section Additions_while. Variable A : Set. Variables P Q : A -> Prop. Variable le : A -> A -> Prop. Hypothesis Q_dec : forall s : A, P s -> {Q s} + {~ Q s}. Hypothesis le_step : forall s : A, ~ Q s -> P s -> {s' | P s' /\ le s' s}. Hypothesis le_wf : well_founded le. Lemma loopexec : forall s : A, P s -> {s' : A | P s' /\ Q s'}. refine (well_founded_induction_type le_wf (fun s => _ -> {s' : A | _ /\ _}) (fun s hr i => match Q_dec s i with | left _ => _ | right _ => match le_step s _ _ with | exist _ s' h' => match hr s' _ _ with | exist _ s'' _ => exist _ s'' _ end end end)). Abort. End Additions_while. (* Two examples from G. Melquiond (BZ#1878 and BZ#1884) *) Parameter F1 G1 : nat -> Prop. Goal forall x : nat, F1 x -> G1 x. refine (fun x H => proj2 (_ x H)). Abort. Goal forall x : nat, F1 x -> G1 x. refine (fun x H => proj2 (_ x H) _). Abort. (* An example from y-not that was failing in 8.2rc1 *) Fixpoint filter (A:nat->Set) (l:list (sigT A)) : list (sigT A) := match l with | nil => nil | (existT _ k v)::l' => (existT _ k v):: (filter A l') end. (* BZ#2000: used to raise Out of memory in 8.2 while it should fail by lack of information on the conclusion of the type of j *) Goal True. set (p:=fun j => j (or_intror _ (fun a:True => j (or_introl _ a)))) || idtac. Abort. (* Remark: the following example stopped succeeding at some time in the development of 8.2 but it works again (this was because 8.2 algorithm was more general and did not exclude a solution that it should have excluded for typing reason; handling of types and backtracking is still to be done) *) Section S. Variables A B : nat -> Prop. Goal forall x : nat, A x -> B x. refine (fun x H => proj2 (_ x H) _). Abort. End S. (* Check that constraints are taken into account by tactics that instantiate *) Lemma inj : forall n m, S n = S m -> n = m. intros n m H. eapply f_equal with (* should fail because ill-typed *) (f := fun n => match n return match n with S _ => nat | _ => unit end with | S n => n | _ => tt end) in H || injection H. Abort. (* A legitimate simple eapply that was failing in coq <= 8.3. Cf. in Unification.w_merge the addition of an extra pose_all_metas_as_evars on 30/9/2010 *) Lemma simple_eapply_was_failing : (forall f:nat->nat, exists g, f = g) -> True. Proof. assert (modusponens : forall P Q, P -> (P->Q) -> Q) by auto. intros. eapply modusponens. simple eapply H. (* error message with V8.3 : Impossible to unify "?18" with "fun g : nat -> nat => ?6 = g". *) Abort. (* Regression test *) Definition fo : option nat -> nat := option_rec _ (fun a => 0) 0. (* This example revealed an incorrect evar restriction at some time around October 2011 *) Goal forall (A:Type) (a:A) (P:forall A, A -> Prop), (P A a) /\ (P A a). intros. refine ((fun H => conj (proj1 H) (proj2 H)) _). Abort. (* The argument of e below failed to be inferred from r14219 (Oct 2011) to *) (* r14753 after the restrictions made on detecting Miller's pattern in the *) (* presence of alias, only the second-order unification procedure was *) (* able to solve this problem but it was deactivated for 8.4 in r14219 *) Definition k0 (e:forall P : nat -> Prop, (exists n : nat, P n) -> nat) (j : forall a, exists n : nat, n = a) o := match o with (* note: match introduces an alias! *) | Some a => e _ (j a) | None => O end. Definition k1 (e:forall P : nat -> Prop, (exists n : nat, P n) -> nat) (j : forall a, exists n : nat, n = a) a (b:=a) := e _ (j a). Definition k2 (e:forall P : nat -> Prop, (exists n : nat, P n) -> nat) (j : forall a, exists n : nat, n = a) a (b:=a) := e _ (j b). (* Other examples about aliases involved in pattern unification *) Definition k3 (e:forall P : nat -> Prop, (exists n : nat, P n) -> nat) (j : forall a, exists n : nat, let a' := a in n = a') a (b:=a) := e _ (j b). Definition k4 (e:forall P : nat -> Prop, (exists n : nat, P n) -> nat) (j : forall a, exists n : nat, let a' := S a in n = a') a (b:=a) := e _ (j b). Definition k5 (e:forall P : nat -> Prop, (exists n : nat, P n) -> nat) (j : forall a, let a' := S a in exists n : nat, n = a') a (b:=a) := e _ (j b). Definition k6 (e:forall P : nat -> Prop, (exists n : nat, P n) -> nat) (j : forall a, exists n : nat, let n' := S n in n' = a) a (b:=a) := e _ (j b). Definition k7 (e:forall P : nat -> Prop, (exists n : nat, let n' := n in P n') -> nat) (j : forall a, exists n : nat, n = a) a (b:=a) := e _ (j b). (* An example that uses materialize_evar under binders *) (* Extracted from bigop.v in the mathematical components library *) Section Bigop. Variable bigop : forall R I: Type, R -> (R -> R -> R) -> list I -> (I->Prop) -> (I -> R) -> R. Hypothesis eq_bigr : forall (R : Type) (idx : R) (op : R -> R -> R) (I : Type) (r : list I) (P : I -> Prop) (F1 F2 : I -> R), (forall i : I, P i -> F1 i = F2 i) -> bigop R I idx op r (fun i : I => P i) (fun i : I => F1 i) = idx. Hypothesis big_tnth : forall (R : Type) (idx : R) (op : R -> R -> R) (I : Type) (r : list I) (P : I -> Prop) (F : I -> R), bigop R I idx op r (fun i : I => P i) (fun i : I => F i) = idx. Hypothesis big_tnth_with_letin : forall (R : Type) (idx : R) (op : R -> R -> R) (I : Type) (r : list I) (P : I -> Prop) (F : I -> R), bigop R I idx op r (fun i : I => let i:=i in P i) (fun i : I => F i) = idx. Variable R : Type. Variable idx : R. Variable op : R -> R -> R. Variable I : Type. Variable J : Type. Variable rI : list I. Variable rJ : list J. Variable xQ : J -> Prop. Variable P : I -> Prop. Variable Q : I -> J -> Prop. Variable F : I -> J -> R. (* Check unification under binders *) Check (eq_bigr _ _ _ _ _ _ _ _ (fun _ _ => big_tnth _ _ _ _ rI _ _)) : (bigop R J idx op rJ (fun j : J => let k:=j in xQ k) (fun j : J => let k:=j in bigop R I idx op rI (fun i : I => P i /\ Q i k) (fun i : I => let k:=j in F i k))) = idx. (* Check also with let-in *) Check (eq_bigr _ _ _ _ _ _ _ _ (fun _ _ => big_tnth_with_letin _ _ _ _ rI _ _)) : (bigop R J idx op rJ (fun j : J => let k:=j in xQ k) (fun j : J => let k:=j in bigop R I idx op rI (fun i : I => P i /\ Q i k) (fun i : I => let k:=j in F i k))) = idx. End Bigop. (* Check the use of (at least) an heuristic to solve problems of the form "?x[t] = ?y" where ?y occurs in t without easily knowing if ?y can eventually be erased in t *) Section evar_evar_occur. Variable id : nat -> nat. Variable f : forall x, id x = 0 -> id x = 0 -> x = 1 /\ x = 2. Variable g : forall y, id y = 0 /\ id y = 0. (* Still evars in the resulting type, but constraints should be solved *) Check match g _ with conj a b => f _ a b end. End evar_evar_occur. (* Eta expansion (BZ#2936) *) Record iffT (X Y:Type) : Type := mkIff { iffLR : X->Y; iffRL : Y->X }. Record tri (R:Type->Type->Type) (S:Type->Type->Type) (T:Type->Type->Type) := mkTri { tri0 : forall a b c, R a b -> S a c -> T b c }. Arguments mkTri [R S T]. Definition tri_iffT : tri iffT iffT iffT := (mkTri (fun X0 X1 X2 E01 E02 => (mkIff _ _ (fun x1 => iffLR _ _ E02 (iffRL _ _ E01 x1)) (fun x2 => iffLR _ _ E01 (iffRL _ _ E02 x2))))). (* Check that local defs names are preserved if possible during unification *) Goal forall x (x':=x) (f:forall y, y=y:>nat -> Prop), f _ (eq_refl x'). intros. unfold x' at 2. (* A way to check that there are indeed 2 occurrences of x' *) Abort. (* A simple example we would like not to fail (it used to fail because of not strict enough evar restriction) *) Check match Some _ with None => _ | _ => _ end. (* Used to fail for a couple of days in Nov 2014 *) Axiom test : forall P1 P2, P1 = P2 -> P1 -> P2. (* Check use of candidates *) Import EqNotations. Definition test2 {A B:Type} {H:A=B} (a:A) : B := rew H in a. (* Check that pre-existing evars are not counted as newly undefined in "set" *) (* Reported by Théo *) Goal exists n : nat, n = n -> True. eexists. set (H := _ = _). Abort. (* Check interpretation of default evar instance in pretyping *) (* (reported as bug #7356) *) Check fun (P : nat -> Prop) (x:nat) (h:P x) => exist _ ?[z] (h : P ?z).