Polymorphic Cumulative Inductive T1 := t1 : T1. Fail Monomorphic Cumulative Inductive T2 := t2 : T2. Polymorphic Cumulative Record R1 := { r1 : T1 }. Fail Monomorphic Cumulative Inductive R2 := {r2 : T1}. Set Universe Polymorphism. Set Polymorphic Inductive Cumulativity. Set Printing Universes. Inductive List (A: Type) := nil | cons : A -> List A -> List A. Definition LiftL@{k i j|k <= i, k <= j} {A:Type@{k}} : List@{i} A -> List@{j} A := fun x => x. Lemma LiftL_Lem A (l : List A) : l = LiftL l. Proof. reflexivity. Qed. Inductive Tp := tp : Type -> Tp. Definition LiftTp@{i j|i <= j} : Tp@{i} -> Tp@{j} := fun x => x. Fail Definition LowerTp@{i j|j < i} : Tp@{i} -> Tp@{j} := fun x => x. Record Tp' := { tp' : Tp }. Definition CTp := Tp. (* here we have to reduce a constant to infer the correct subtyping. *) Record Tp'' := { tp'' : CTp }. Definition LiftTp'@{i j|i <= j} : Tp'@{i} -> Tp'@{j} := fun x => x. Definition LiftTp''@{i j|i <= j} : Tp''@{i} -> Tp''@{j} := fun x => x. Lemma LiftC_Lem (t : Tp) : LiftTp t = t. Proof. reflexivity. Qed. Section subtyping_test. Universe i j. Constraint i < j. Inductive TP2 := tp2 : Type@{i} -> Type@{j} -> TP2. End subtyping_test. Record A : Type := { a :> Type; }. Record B (X : A) : Type := { b : X; }. NonCumulative Inductive NCList (A: Type) := ncnil | nccons : A -> NCList A -> NCList A. Fail Definition LiftNCL@{k i j|k <= i, k <= j} {A:Type@{k}} : NCList@{i} A -> NCList@{j} A := fun x => x. Inductive eq@{i} {A : Type@{i}} (x : A) : A -> Type@{i} := eq_refl : eq x x. Definition funext_type@{a b e} (A : Type@{a}) (B : A -> Type@{b}) := forall f g : (forall a, B a), (forall x, eq@{e} (f x) (g x)) -> eq@{e} f g. Section down. Universes a b e e'. Constraint e' < e. Lemma funext_down {A B} : @funext_type@{a b e} A B -> @funext_type@{a b e'} A B. Proof. intros H f g Hfg. exact (H f g Hfg). Defined. End down. Record Arrow@{i j} := { arrow : Type@{i} -> Type@{j} }. Fail Definition arrow_lift@{i i' j j' | i' < i, j < j'} : Arrow@{i j} -> Arrow@{i' j'} := fun x => x. Definition arrow_lift@{i i' j j' | i' = i, j <= j'} : Arrow@{i j} -> Arrow@{i' j'} := fun x => x. Inductive Mut1 A := | Base1 : Type -> Mut1 A | Node1 : (A -> Mut2 A) -> Mut1 A with Mut2 A := | Base2 : Type -> Mut2 A | Node2 : Mut1 A -> Mut2 A. (* If we don't reduce T while inferring cumulativity for the constructor we will see a Rel and believe i is irrelevant. *) Inductive withparams@{i j} (T:=Type@{i}:Type@{j}) := mkwithparams : T -> withparams. Definition withparams_co@{i i' j|i < i', i' < j} : withparams@{i j} -> withparams@{i' j} := fun x => x. Fail Definition withparams_not_irr@{i i' j|i' < i, i' < j} : withparams@{i j} -> withparams@{i' j} := fun x => x. (** Cumulative constructors *) Record twotys@{u v w} : Type@{w} := twoconstr { fstty : Type@{u}; sndty : Type@{v} }. Monomorphic Universes i j k l. Monomorphic Constraint i < j. Monomorphic Constraint j < k. Monomorphic Constraint k < l. Parameter Tyi : Type@{i}. Definition checkcumul := eq_refl _ : @eq twotys@{k k l} (twoconstr@{i j k} Tyi Tyi) (twoconstr@{j i k} Tyi Tyi). (* They can only be compared at the highest type *) Fail Definition checkcumul' := eq_refl _ : @eq twotys@{i k l} (twoconstr@{i j k} Tyi Tyi) (twoconstr@{j i k} Tyi Tyi). (* An inductive type with an irrelevant universe *) Inductive foo@{i} : Type@{i} := mkfoo { }. Definition bar := foo. (* The universe on mkfoo is flexible and should be unified with i. *) Definition foo1@{i} : foo@{i} := let x := mkfoo in x. (* fast path for conversion *) Definition foo2@{i} : bar@{i} := let x := mkfoo in x. (* must reduce *) (* Rigid universes however should not be unified unnecessarily. *) Definition foo3@{i j|} : foo@{i} := let x := mkfoo@{j} in x. Definition foo4@{i j|} : bar@{i} := let x := mkfoo@{j} in x. (* Constructors for an inductive with indices *) Module WithIndex. Inductive foo@{i} : (Prop -> Prop) -> Prop := mkfoo: foo (fun x => x). Monomorphic Universes i j. Monomorphic Constraint i < j. Definition bar : eq mkfoo@{i} mkfoo@{j} := eq_refl _. End WithIndex.