Lemma foo1 : nat -> True. Proof. intros _. assert (H : True -> True). { abstract (exact (fun x => x)) using bar. } assert (H' : True). { abstract (exact (bar I)) using qux. } exact H'. Qed. Lemma foo2 : True. Proof. assert (H : True -> True). { abstract (exact (fun x => x)) using bar. } assert (H' : True). { abstract (exact (bar I)) using qux. } assert (H'' : True). { abstract (exact (bar qux)) using quz. } exact H''. Qed. Set Universe Polymorphism. Lemma foo3 : nat -> True. Proof. intros _. assert (H : True -> True). { abstract (exact (fun x => x)) using bar. } assert (H' : True). { abstract (exact (bar I)) using qux. } exact H'. Qed. Lemma foo4 : True. Proof. assert (H : True -> True). { abstract (exact (fun x => x)) using bar. } assert (H' : True). { abstract (exact (bar I)) using qux. } assert (H'' : True). { abstract (exact (bar qux)) using quz. } exact H''. Qed.