Require Reals. Axiom y : R->R. Axiom d_y : (derivable y). Axiom n_y : (x:R)``(y x)<>0``. Axiom dy_0 : (derive_pt y R0 (d_y R0)) == R1. Lemma essai0 : (continuity_pt [x:R]``(x+2)/(y x)+x/(y x)`` R0). Assert H := d_y. Assert H0 := n_y. Reg. Qed. Lemma essai1 : (derivable_pt [x:R]``/2*(sin x)`` ``1``). Reg. Qed. Lemma essai2 : (continuity [x:R]``(Rsqr x)*(cos (x*x))+x``). Reg. Qed. Lemma essai3 : (derivable_pt [x:R]``x*((Rsqr x)+3)`` R0). Reg. Qed. Lemma essai4 : (derivable [x:R]``(x+x)*(sin x)``). Reg. Qed. Lemma essai5 : (derivable [x:R]``1+(sin (2*x+3))*(cos (cos x))``). Reg. Qed. Lemma essai6 : (derivable [x:R]``(cos (x+3))``). Reg. Qed. Lemma essai7 : (derivable_pt [x:R]``(cos (/(sqrt x)))*(Rsqr ((sin x)+1))`` R1). Reg. Apply Rlt_R0_R1. Red; Intro; Rewrite sqrt_1 in H; Assert H0 := R1_neq_R0; Elim H0; Assumption. Qed. Lemma essai8 : (derivable_pt [x:R]``(sqrt ((Rsqr x)+(sin x)+1))`` R0). Reg. Rewrite sin_0. Rewrite Rsqr_O. Replace ``0+0+1`` with ``1``; [Apply Rlt_R0_R1 | Ring]. Qed. Lemma essai9 : (derivable_pt (plus_fct id sin) R1). Reg. Qed. Lemma essai10 : (derivable_pt [x:R]``x+2`` R0). Reg. Qed. Lemma essai11 : (derive_pt [x:R]``x+2`` R0 essai10)==R1. Reg. Qed. Lemma essai12 : (derivable [x:R]``x+(Rsqr (x+2))``). Reg. Qed. Lemma essai13 : (derive_pt [x:R]``x+(Rsqr (x+2))`` R0 (essai12 R0)) == ``5``. Reg. Qed. Lemma essai14 : (derivable_pt [x:R]``2*x+x`` ``2``). Reg. Qed. Lemma essai15 : (derive_pt [x:R]``2*x+x`` ``2`` essai14) == ``3``. Reg. Qed. Lemma essai16 : (derivable_pt [x:R]``x+(sin x)`` R0). Reg. Qed. Lemma essai17 : (derive_pt [x:R]``x+(sin x)`` R0 essai16)==``2``. Reg. Rewrite cos_0. Reflexivity. Qed. Lemma essai18 : (derivable_pt [x:R]``x+(y x)`` ``0``). Assert H := d_y. Reg. Qed. Lemma essai19 : (derive_pt [x:R]``x+(y x)`` ``0`` essai18) == ``2``. Assert H := dy_0. Assert H0 := d_y. Reg. Qed. Axiom z:R->R. Axiom d_z: (derivable z). Lemma essai20 : (derivable_pt [x:R]``(z (y x))`` R0). Reg. Apply d_y. Apply d_z. Qed. Lemma essai21 : (derive_pt [x:R]``(z (y x))`` R0 essai20) == R1. Assert H := dy_0. Reg. Abort. Lemma essai22 : (derivable [x:R]``(sin (z x))+(Rsqr (z x))/(y x)``). Assert H := d_y. Reg. Apply n_y. Apply d_z. Qed. (* Pour tester la continuite de sqrt en 0 *) Lemma essai23 : (continuity_pt [x:R]``(sin (sqrt (x-1)))+(exp (Rsqr ((sqrt x)+3)))`` R1). Reg. Left; Apply Rlt_R0_R1. Right; Unfold Rminus; Rewrite Rplus_Ropp_r; Reflexivity. Qed. Lemma essai24 : (derivable [x:R]``(sqrt (x*x+2*x+2))+(Rabsolu (x*x+1))``). Reg. Replace ``x*x+2*x+2`` with ``(Rsqr (x+1))+1``. Apply ge0_plus_gt0_is_gt0; [Apply pos_Rsqr | Apply Rlt_R0_R1]. Unfold Rsqr; Ring. Red; Intro; Cut ``0