(* Check local definitions in context of inductive types *) Inductive A (C D : Prop) (E:=C) (F:=D) (x y : E -> F) : E -> Set := I : forall z : E, A C D x y z. Check (fun C D : Prop => let E := C in let F := D in fun (x y : E -> F) (P : forall c : C, A C D x y c -> Type) (f : forall z : C, P z (I C D x y z)) (y0 : C) (a : A C D x y y0) => match a as a0 in (A _ _ _ _ y1) return (P y1 a0) with | I x0 => f x0 end). Record B (C D : Set) (E:=C) (F:=D) (x y : E -> F) : Set := {p : C; q : E}. Check (fun C D : Set => let E := C in let F := D in fun (x y : E -> F) (P : B C D x y -> Type) (f : forall p0 q0 : C, P (Build_B C D x y p0 q0)) (b : B C D x y) => match b as b0 return (P b0) with | Build_B x0 x1 => f x0 x1 end). (* Check implicit parameters of inductive types (submitted by Pierre Casteran and also implicit in #338) *) Set Implicit Arguments. Unset Strict Implicit. CoInductive LList (A : Set) : Set := | LNil : LList A | LCons : A -> LList A -> LList A. Implicit Arguments LNil [A]. Inductive Finite (A : Set) : LList A -> Prop := | Finite_LNil : Finite LNil | Finite_LCons : forall (a : A) (l : LList A), Finite l -> Finite (LCons a l). (* Check positivity modulo reduction (cf bug #983) *) Record P:Type := {PA:Set; PB:Set}. Definition F (p:P) := (PA p) -> (PB p). Inductive I_F:Set := c : (F (Build_P nat I_F)) -> I_F.