(* Check local definitions in context of inductive types *) Inductive A [C,D:Prop; E:=C; F:=D; x,y:E->F] : E -> Set := I : (z:E)(A C D x y z). Check [C,D:Prop; E:=C; F:=D; x,y:(E ->F); P:((c:C)(A C D x y c) ->Type); f:((z:C)(P z (I C D x y z))); y0:C; a:(A C D x y y0)] <[y1:C; a0:(A C D x y y1)](P y1 a0)>Cases a of (I x0) => (f x0) end. Record B [C,D:Set; E:=C; F:=D; x,y:E->F] : Set := { p : C; q : E }. Check [C,D:Set; E:=C; F:=D; x,y:(E ->F); P:((B C D x y) ->Type); f:((p0,q0:C)(P (Build_B C D x y p0 q0))); b:(B C D x y)] <[b0:(B C D x y)](P b0)>Cases b of (Build_B x0 x1) => (f x0 x1) end. (* Check implicit parameters of inductive types (submitted by Pierre Casteran and also implicit in #338) *) Set Implicit Arguments. CoInductive LList [A:Set] : Set := | LNil : (LList A) | LCons : A -> (LList A) -> (LList A). Implicits LNil [1]. Inductive Finite [A:Set] : (LList A) -> Prop := | Finite_LNil : (Finite LNil) | Finite_LCons : (a:A) (l:(LList A)) (Finite l) -> (Finite (LCons a l)).