Definition iszero (n : nat) : bool := match n with | O => true | _ => false end. Functional Scheme iszer_ind := Induction for iszero. Lemma toto : forall n : nat, n = 0 -> iszero n = true. intros x eg. functional induction iszero x; simpl in |- *. trivial. subst x. inversion H_eq_. Qed. (* We can even reuse the proof as a scheme: *) Functional Scheme toto_ind := Induction for iszero. Definition ftest (n m : nat) : nat := match n with | O => match m with | O => 0 | _ => 1 end | S p => 0 end. Functional Scheme ftest_ind := Induction for ftest. Lemma test1 : forall n m : nat, ftest n m <= 2. intros n m. functional induction ftest n m; auto. Qed. Lemma test11 : forall m : nat, ftest 0 m <= 2. intros m. functional induction ftest 0 m. auto. auto. Qed. Definition lamfix (m : nat) := fix trivfun (n : nat) : nat := match n with | O => m | S p => trivfun p end. (* Parameter v1 v2 : nat. *) Lemma lamfix_lem : forall v1 v2 : nat, lamfix v1 v2 = v1. intros v1 v2. functional induction lamfix v1 v2. trivial. assumption. Defined. (* polymorphic function *) Require Import List. Functional Scheme app_ind := Induction for app. Lemma appnil : forall (A : Set) (l l' : list A), l' = nil -> l = l ++ l'. intros A l l'. functional induction app A l l'; intuition. rewrite <- H1; trivial. Qed. Require Export Arith. Fixpoint trivfun (n : nat) : nat := match n with | O => 0 | S m => trivfun m end. (* essaie de parametre variables non locaux:*) Parameter varessai : nat. Lemma first_try : trivfun varessai = 0. functional induction trivfun varessai. trivial. simpl in |- *. assumption. Defined. Functional Scheme triv_ind := Induction for trivfun. Lemma bisrepetita : forall n' : nat, trivfun n' = 0. intros n'. functional induction trivfun n'. trivial. simpl in |- *. assumption. Qed. Fixpoint iseven (n : nat) : bool := match n with | O => true | S (S m) => iseven m | _ => false end. Fixpoint funex (n : nat) : nat := match iseven n with | true => n | false => match n with | O => 0 | S r => funex r end end. Fixpoint nat_equal_bool (n m : nat) {struct n} : bool := match n with | O => match m with | O => true | _ => false end | S p => match m with | O => false | S q => nat_equal_bool p q end end. Require Export Div2. Lemma div2_inf : forall n : nat, div2 n <= n. intros n. functional induction div2 n. auto. auto. apply le_S. apply le_n_S. exact H. Qed. (* reuse this lemma as a scheme:*) Functional Scheme div2_ind := Induction for div2_inf. Fixpoint nested_lam (n : nat) : nat -> nat := match n with | O => fun m : nat => 0 | S n' => fun m : nat => m + nested_lam n' m end. Functional Scheme nested_lam_ind := Induction for nested_lam. Lemma nest : forall n m : nat, nested_lam n m = n * m. intros n m. functional induction nested_lam n m; auto. Qed. Lemma nest2 : forall n m : nat, nested_lam n m = n * m. intros n m. pattern n, m in |- *. apply nested_lam_ind; simpl in |- *; intros; auto. Qed. Fixpoint essai (x : nat) (p : nat * nat) {struct x} : nat := let (n, m) := p in match n with | O => 0 | S q => match x with | O => 1 | S r => S (essai r (q, m)) end end. Lemma essai_essai : forall (x : nat) (p : nat * nat), let (n, m) := p in 0 < n -> 0 < essai x p. intros x p. functional induction essai x p; intros. inversion H. simpl in |- *; try abstract auto with arith. simpl in |- *; try abstract auto with arith. Qed. Fixpoint plus_x_not_five'' (n m : nat) {struct n} : nat := let x := nat_equal_bool m 5 in let y := 0 in match n with | O => y | S q => let recapp := plus_x_not_five'' q m in match x with | true => S recapp | false => S recapp end end. Lemma notplusfive'' : forall x y : nat, y = 5 -> plus_x_not_five'' x y = x. intros a b. unfold plus_x_not_five'' in |- *. functional induction plus_x_not_five'' a b; intros hyp; simpl in |- *; auto. Qed. Lemma iseq_eq : forall n m : nat, n = m -> nat_equal_bool n m = true. intros n m. unfold nat_equal_bool in |- *. functional induction nat_equal_bool n m; simpl in |- *; intros hyp; auto. inversion hyp. inversion hyp. Qed. Lemma iseq_eq' : forall n m : nat, nat_equal_bool n m = true -> n = m. intros n m. unfold nat_equal_bool in |- *. functional induction nat_equal_bool n m; simpl in |- *; intros eg; auto. inversion eg. inversion eg. Qed. Inductive istrue : bool -> Prop := istrue0 : istrue true. Lemma inf_x_plusxy' : forall x y : nat, x <= x + y. intros n m. functional induction plus n m; intros. auto with arith. auto with arith. Qed. Lemma inf_x_plusxy'' : forall x : nat, x <= x + 0. intros n. unfold plus in |- *. functional induction plus n 0; intros. auto with arith. apply le_n_S. assumption. Qed. Lemma inf_x_plusxy''' : forall x : nat, x <= 0 + x. intros n. functional induction plus 0 n; intros; auto with arith. Qed. Fixpoint mod2 (n : nat) : nat := match n with | O => 0 | S (S m) => S (mod2 m) | _ => 0 end. Lemma princ_mod2 : forall n : nat, mod2 n <= n. intros n. functional induction mod2 n; simpl in |- *; auto with arith. Qed. Definition isfour (n : nat) : bool := match n with | S (S (S (S O))) => true | _ => false end. Definition isononeorfour (n : nat) : bool := match n with | S O => true | S (S (S (S O))) => true | _ => false end. Lemma toto'' : forall n : nat, istrue (isfour n) -> istrue (isononeorfour n). intros n. functional induction isononeorfour n; intros istr; simpl in |- *; inversion istr. apply istrue0. Qed. Lemma toto' : forall n m : nat, n = 4 -> istrue (isononeorfour n). intros n. functional induction isononeorfour n; intros m istr; inversion istr. apply istrue0. Qed. Definition ftest4 (n m : nat) : nat := match n with | O => match m with | O => 0 | S q => 1 end | S p => match m with | O => 0 | S r => 1 end end. Lemma test4 : forall n m : nat, ftest n m <= 2. intros n m. functional induction ftest n m; auto with arith. Qed. Lemma test4' : forall n m : nat, ftest4 (S n) m <= 2. intros n m. functional induction ftest4 (S n) m. auto with arith. auto with arith. Qed. Definition ftest44 (x : nat * nat) (n m : nat) : nat := let (p, q) := x in match n with | O => match m with | O => 0 | S q => 1 end | S p => match m with | O => 0 | S r => 1 end end. Lemma test44 : forall (pq : nat * nat) (n m o r s : nat), ftest44 pq n (S m) <= 2. intros pq n m o r s. functional induction ftest44 pq n (S m). auto with arith. auto with arith. auto with arith. auto with arith. Qed. Fixpoint ftest2 (n m : nat) {struct n} : nat := match n with | O => match m with | O => 0 | S q => 0 end | S p => ftest2 p m end. Lemma test2 : forall n m : nat, ftest2 n m <= 2. intros n m. functional induction ftest2 n m; simpl in |- *; intros; auto. Qed. Fixpoint ftest3 (n m : nat) {struct n} : nat := match n with | O => 0 | S p => match m with | O => ftest3 p 0 | S r => 0 end end. Lemma test3 : forall n m : nat, ftest3 n m <= 2. intros n m. functional induction ftest3 n m. intros. auto. intros. auto. intros. simpl in |- *. auto. Qed. Fixpoint ftest5 (n m : nat) {struct n} : nat := match n with | O => 0 | S p => match m with | O => ftest5 p 0 | S r => ftest5 p r end end. Lemma test5 : forall n m : nat, ftest5 n m <= 2. intros n m. functional induction ftest5 n m. intros. auto. intros. auto. intros. simpl in |- *. auto. Qed. Definition ftest7 (n : nat) : nat := match ftest5 n 0 with | O => 0 | S r => 0 end. Lemma essai7 : forall (Hrec : forall n : nat, ftest5 n 0 = 0 -> ftest7 n <= 2) (Hrec0 : forall n r : nat, ftest5 n 0 = S r -> ftest7 n <= 2) (n : nat), ftest7 n <= 2. intros hyp1 hyp2 n. unfold ftest7 in |- *. functional induction ftest7 n; auto. Qed. Fixpoint ftest6 (n m : nat) {struct n} : nat := match n with | O => 0 | S p => match ftest5 p 0 with | O => ftest6 p 0 | S r => ftest6 p r end end. Lemma princ6 : (forall n m : nat, n = 0 -> ftest6 0 m <= 2) -> (forall n m p : nat, ftest6 p 0 <= 2 -> ftest5 p 0 = 0 -> n = S p -> ftest6 (S p) m <= 2) -> (forall n m p r : nat, ftest6 p r <= 2 -> ftest5 p 0 = S r -> n = S p -> ftest6 (S p) m <= 2) -> forall x y : nat, ftest6 x y <= 2. intros hyp1 hyp2 hyp3 n m. generalize hyp1 hyp2 hyp3. clear hyp1 hyp2 hyp3. functional induction ftest6 n m; auto. Qed. Lemma essai6 : forall n m : nat, ftest6 n m <= 2. intros n m. unfold ftest6 in |- *. functional induction ftest6 n m; simpl in |- *; auto. Qed.