(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* nat), f (x + y).+1 = f (y + x.+1). by move=> x y f; rewrite [_.+1](addnC x.+1). Qed. Lemma test2 : forall x y f, x + y + f (y + x) + f (y + x) = x + y + f (y + x) + f (x + y). by move=> x y f; rewrite {2}[in f _]addnC. Qed. Lemma test2' : forall x y f, true && f (x * (y + x)) = true && f(x * (x + y)). by move=> x y f; rewrite [in f _](addnC y). Qed. Lemma test2'' : forall x y f, f (y + x) + f(y + x) + f(y + x) = f(x + y) + f(y + x) + f(x + y). by move=> x y f; rewrite {1 3}[in f _](addnC y). Qed. (* patterns catching bound vars not supported *) Lemma test2_1 : forall x y f, true && (let z := x in f (z * (y + x))) = true && f(x * (x + y)). by move=> x y f; rewrite [in f _](addnC x). (* put y when bound var will be OK *) Qed. Lemma test3 : forall x y f, x + f (x + y) (f (y + x) x) = x + f (x + y) (f (x + y) x). by move=> x y f; rewrite [in X in (f _ X)](addnC y). Qed. Lemma test3' : forall x y f, x = y -> x + f (x + x) x + f (x + x) x = x + f (x + y) x + f (y + x) x. by move=> x y f E; rewrite {2 3}[in X in (f X _)]E. Qed. Lemma test3'' : forall x y f, x = y -> x + f (x + y) x + f (x + y) x = x + f (x + y) x + f (y + y) x. by move=> x y f E; rewrite {2}[in X in (f X _)]E. Qed. Lemma test4 : forall x y f, x = y -> x + f (fun _ : nat => x + x) x + f (fun _ => x + x) x = x + f (fun _ => x + y) x + f (fun _ => y + x) x. by move=> x y f E; rewrite {2 3}[in X in (f X _)]E. Qed. Lemma test4' : forall x y f, x = y -> x + f (fun _ _ _ : nat => x + x) x = x + f (fun _ _ _ => x + y) x. by move=> x y f E; rewrite {2}[in X in (f X _)]E. Qed. Lemma test5 : forall x y f, x = y -> x + f (y + x) x + f (y + x) x = x + f (x + y) x + f (y + x) x. by move=> x y f E; rewrite {1}[X in (f X _)]addnC. Qed. Lemma test3''' : forall x y f, x = y -> x + f (x + y) x + f (x + y) (x + y) = x + f (x + y) x + f (y + y) (x + y). by move=> x y f E; rewrite {1}[in X in (f X X)]E. Qed. Lemma test3'''' : forall x y f, x = y -> x + f (x + y) x + f (x + y) (x + y) = x + f (x + y) x + f (y + y) (y + y). by move=> x y f E; rewrite [in X in (f X X)]E. Qed. Lemma test3x : forall x y f, y+y = x+y -> x + f (x + y) x + f (x + y) (x + y) = x + f (x + y) x + f (y + y) (y + y). by move=> x y f E; rewrite -[X in (f X X)]E. Qed. Lemma test6 : forall x y (f : nat -> nat), f (x + y).+1 = f (y.+1 + x). by move=> x y f; rewrite [(x + y) in X in (f X)]addnC. Qed. Lemma test7 : forall x y (f : nat -> nat), f (x + y).+1 = f (y + x.+1). by move=> x y f; rewrite [(x.+1 + y) as X in (f X)]addnC. Qed. Lemma manual x y z (f : nat -> nat -> nat) : (x + y).+1 + f (x.+1 + y) (z + (x + y).+1) = 0. Proof. rewrite [in f _]addSn. match goal with |- (x + y).+1 + f (x + y).+1 (z + (x + y).+1) = 0 => idtac end. rewrite -[X in _ = X]addn0. match goal with |- (x + y).+1 + f (x + y).+1 (z + (x + y).+1) = 0 + 0 => idtac end. rewrite -{2}[in X in _ = X](addn0 0). match goal with |- (x + y).+1 + f (x + y).+1 (z + (x + y).+1) = 0 + (0 + 0) => idtac end. rewrite [_.+1 in X in f _ X](addnC x.+1). match goal with |- (x + y).+1 + f (x + y).+1 (z + (y + x.+1)) = 0 + (0 + 0) => idtac end. rewrite [x.+1 + y as X in f X _]addnC. match goal with |- (x + y).+1 + f (y + x.+1) (z + (y + x.+1)) = 0 + (0 + 0) => idtac end. Admitted. Goal (exists x : 'I_3, x > 0). apply: (ex_intro _ (@Ordinal _ 2 _)). Admitted. Goal (forall y, 1 < y < 2 -> exists x : 'I_3, x > 0). move=> y; case/andP=> y_gt1 y_lt2; apply: (ex_intro _ (@Ordinal _ y _)). by apply: leq_trans y_lt2 _. by move=> y_lt3; apply: leq_trans _ y_gt1. Qed. Goal (forall x y : nat, forall P : nat -> Prop, x = y -> True). move=> x y P E. have: P x -> P y by suff: x = y by move=> ?; congr (P _). Admitted. Goal forall a : bool, a -> true && a || false && a. by move=> a ?; rewrite [true && _]/= [_ && a]/= orbC [_ || _]//=. Qed. Goal forall a : bool, a -> true && a || false && a. by move=> a ?; rewrite [X in X || _]/= [X in _ || X]/= orbC [false && a as X in X || _]//=. Qed. Variable a : bool. Definition f x := x || a. Definition g x := f x. Goal a -> g false. by move=> Ha; rewrite [g _]/f orbC Ha. Qed. Goal a -> g false || g false. move=> Ha; rewrite {2}[g _]/f orbC Ha. match goal with |- (is_true (false || true || g false)) => done end. Qed. Goal a -> (a && a || true && a) && true. by move=> Ha; rewrite -[_ || _]/(g _) andbC /= Ha [g _]/f. Qed. Goal a -> (a || a) && true. by move=> Ha; rewrite -[in _ || _]/(f _) Ha andbC /f. Qed.