(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* Prop. Lemma clear_test (b1 b2 : bool) : b2 = b2. Proof. (* wlog gH : (b3 := b2) / b2 = b3. myadmit. *) gen have {b1} H, gH : (b3 := b2) (w := erefl 3) / b2 = b3. myadmit. Fail exact (H b1). exact (H b2 (erefl _)). Qed. Lemma test1 n (ngt0 : 0 < n) : P n. gen have lt2le, /andP[H1 H2] : n ngt0 / (0 <= n) && (n != 0). match goal with |- is_true((0 <= n) && (n != 0)) => myadmit end. Check (lt2le : forall n : nat, 0 < n -> (0 <= n) && (n != 0)). Check (H1 : 0 <= n). Check (H2 : n != 0). myadmit. Qed. Lemma test2 n (ngt0 : 0 < n) : P n. gen have _, /andP[H1 H2] : n ngt0 / (0 <= n) && (n != 0). match goal with |- is_true((0 <= n) && (n != 0)) => myadmit end. lazymatch goal with | lt2le : forall n : nat, is_true(0 < n) -> is_true((0 <= n) && (n != 0)) |- _ => fail "not cleared" | _ => idtac end. Check (H1 : 0 <= n). Check (H2 : n != 0). myadmit. Qed. Lemma test3 n (ngt0 : 0 < n) : P n. gen have H : n ngt0 / (0 <= n) && (n != 0). match goal with |- is_true((0 <= n) && (n != 0)) => myadmit end. Check (H : forall n : nat, 0 < n -> (0 <= n) && (n != 0)). myadmit. Qed. Lemma test4 n (ngt0 : 0 < n) : P n. gen have : n ngt0 / (0 <= n) && (n != 0). match goal with |- is_true((0 <= n) && (n != 0)) => myadmit end. move=> H. Check(H : forall n : nat, 0 < n -> (0 <= n) && (n != 0)). myadmit. Qed. Lemma test4bis n (ngt0 : 0 < n) : P n. wlog suff : n ngt0 / (0 <= n) && (n != 0); last first. match goal with |- is_true((0 <= n) && (n != 0)) => myadmit end. move=> H. Check(H : forall n : nat, 0 < n -> (0 <= n) && (n != 0)). myadmit. Qed. Lemma test5 n (ngt0 : 0 < n) : P n. Fail gen have : / (0 <= n) && (n != 0). Abort. Lemma test6 n (ngt0 : 0 < n) : P n. gen have : n ngt0 / (0 <= n) && (n != 0) by myadmit. Abort. Lemma test7 n (ngt0 : 0 < n) : P n. Fail gen have : n / (0 <= n) && (n != 0). Abort. Lemma test3wlog2 n (ngt0 : 0 < n) : P n. gen have H : (m := n) ngt0 / (0 <= m) && (m != 0). match goal with ngt0 : is_true(0 < m) |- is_true((0 <= m) && (m != 0)) => myadmit end. Check (H : forall n : nat, 0 < n -> (0 <= n) && (n != 0)). myadmit. Qed. Lemma test3wlog3 n (ngt0 : 0 < n) : P n. gen have H : {n} (m := n) (n := 0) ngt0 / (0 <= m) && (m != n). match goal with ngt0 : is_true(n < m) |- is_true((0 <= m) && (m != n)) => myadmit end. Check (H : forall m n : nat, n < m -> (0 <= m) && (m != n)). myadmit. Qed. Lemma testw1 n (ngt0 : 0 < n) : n <= 0. wlog H : (z := 0) (m := n) ngt0 / m != 0. match goal with |- (forall z m, is_true(z < m) -> is_true(m != 0) -> is_true(m <= z)) -> is_true(n <= 0) => myadmit end. Check(n : nat). Check(m : nat). Check(z : nat). Check(ngt0 : z < m). Check(H : m != 0). myadmit. Qed. Lemma testw2 n (ngt0 : 0 < n) : n <= 0. wlog H : (m := n) (z := (X in n <= X)) ngt0 / m != z. match goal with |- (forall m z : nat, is_true(0 < m) -> is_true(m != z) -> is_true(m <= z)) -> is_true(n <= 0) => idtac end. Restart. wlog H : (m := n) (one := (X in X <= _)) ngt0 / m != one. match goal with |- (forall m one : nat, is_true(one <= m) -> is_true(m != one) -> is_true(m <= 0)) -> is_true(n <= 0) => idtac end. Restart. wlog H : {n} (m := n) (z := (X in _ <= X)) ngt0 / m != z. match goal with |- (forall m z : nat, is_true(0 < z) -> is_true(m != z) -> is_true(m <= 0)) -> is_true(n <= 0) => idtac end. myadmit. Fail Check n. myadmit. Qed. Section Test. Variable x : nat. Definition addx y := y + x. Lemma testw3 (m n : nat) (ngt0 : 0 < n) : n <= addx x. wlog H : (n0 := n) (y := x) (@twoy := (id _ as X in _ <= X)) / twoy = 2 * y. myadmit. myadmit. Qed. Definition twox := x + x. Definition bis := twox. Lemma testw3x n (ngt0 : 0 < n) : n + x <= twox. wlog H : (y := x) (@twoy := (X in _ <= X)) / twoy = 2 * y. match goal with |- (forall y : nat, let twoy := y + y in twoy = 2 * y -> is_true(n + y <= twoy)) -> is_true(n + x <= twox) => myadmit end. Restart. wlog H : (y := x) (@twoy := (id _ as X in _ <= X)) / twoy = 2 * y. match goal with |- (forall y : nat, let twoy := twox in twoy = 2 * y -> is_true(n + y <= twoy)) -> is_true(n + x <= twox) => myadmit end. myadmit. Qed. End Test. Lemma test_in n k (def_k : k = 0) (ngtk : k < n) : P n. rewrite -(add0n n) in {def_k k ngtk} (m := k) (def_m := def_k) (ngtm := ngtk). rewrite def_m add0n in {ngtm} (e := erefl 0 ) (ngt0 := ngtm) => {def_m}. myadmit. Qed.