(************************************************************************) (* * The Coq Proof Assistant / The Coq Development Team *) (* v * INRIA, CNRS and contributors - Copyright 1999-2018 *) (* A s; elim branch: s => [|x xs _]. match goal with _ : _ = [::] |- [::] = [::] => move: branch => // | _ => fail end. match goal with _ : _ = _ :: _ |- _ :: _ = _ :: _ => move: branch => // | _ => fail end. Qed. (* The same but with explicit eliminator and a conflict in the intro pattern *) Lemma testL2 : forall A (s : seq A), s = s. Proof. move=> A s; elim/last_ind branch: s => [|x s _]. match goal with _ : _ = [::] |- [::] = [::] => move: branch => // | _ => fail end. match goal with _ : _ = rcons _ _ |- rcons _ _ = rcons _ _ => move: branch => // | _ => fail end. Qed. (* The same but without names for variables involved in the generated eq *) Lemma testL3 : forall A (s : seq A), s = s. Proof. move=> A s; elim branch: s; move: (s) => _. match goal with _ : _ = [::] |- [::] = [::] => move: branch => // | _ => fail end. move=> _; match goal with _ : _ = _ :: _ |- _ :: _ = _ :: _ => move: branch => // | _ => fail end. Qed. Inductive foo : Type := K1 : foo | K2 : foo -> foo -> foo | K3 : (nat -> foo) -> foo. (* The same but with more intros to be done *) Lemma testL4 : forall (o : foo), o = o. Proof. move=> o; elim branch: o. match goal with _ : _ = K1 |- K1 = K1 => move: branch => // | _ => fail end. move=> _; match goal with _ : _ = K2 _ _ |- K2 _ _ = K2 _ _ => move: branch => // | _ => fail end. move=> _; match goal with _ : _ = K3 _ |- K3 _ = K3 _ => move: branch => // | _ => fail end. Qed. (* Occurrence counting *) Lemma testO1: forall (b : bool), b = b. Proof. move=> b; case: (b) / idP. match goal with |- is_true b -> true = true => done | _ => fail end. match goal with |- ~ is_true b -> false = false => done | _ => fail end. Qed. (* The same but only the second occ *) Lemma testO2: forall (b : bool), b = b. Proof. move=> b; case: {2}(b) / idP. match goal with |- is_true b -> b = true => done | _ => fail end. match goal with |- ~ is_true b -> b = false => move/(introF idP) => // | _ => fail end. Qed. (* The same but with eq generation *) Lemma testO3: forall (b : bool), b = b. Proof. move=> b; case E: {2}(b) / idP. match goal with _ : is_true b, _ : b = true |- b = true => move: E => _; done | _ => fail end. match goal with H : ~ is_true b, _ : b = false |- b = false => move: E => _; move/(introF idP): H => // | _ => fail end. Qed. (* Views *) Lemma testV1 : forall A (s : seq A), s = s. Proof. move=> A s; case/lastP E: {1}s => [| x xs]. match goal with _ : s = [::] |- [::] = s => symmetry; exact E | _ => fail end. match goal with _ : s = rcons x xs |- rcons _ _ = s => symmetry; exact E | _ => fail end. Qed. Lemma testV2 : forall A (s : seq A), s = s. Proof. move=> A s; case/lastP E: s => [| x xs]. match goal with _ : s = [::] |- [::] = [::] => done | _ => fail end. match goal with _ : s = rcons x xs |- rcons _ _ = rcons _ _ => done | _ => fail end. Qed. Lemma testV3 : forall A (s : seq A), s = s. Proof. move=> A s; case/lastP: s => [| x xs]. match goal with |- [::] = [::] => done | _ => fail end. match goal with |- rcons _ _ = rcons _ _ => done | _ => fail end. Qed. (* Patterns *) Lemma testP1: forall (x y : nat), (y == x) && (y == x) -> y == x. move=> x y; elim: {2}(_ == _) / eqP. match goal with |- (y = x -> is_true ((y == x) && true) -> is_true (y == x)) => move=> -> // | _ => fail end. match goal with |- (y <> x -> is_true ((y == x) && false) -> is_true (y == x)) => move=> _; rewrite andbC // | _ => fail end. Qed. (* The same but with an implicit pattern *) Lemma testP2 : forall (x y : nat), (y == x) && (y == x) -> y == x. move=> x y; elim: {2}_ / eqP. match goal with |- (y = x -> is_true ((y == x) && true) -> is_true (y == x)) => move=> -> // | _ => fail end. match goal with |- (y <> x -> is_true ((y == x) && false) -> is_true (y == x)) => move=> _; rewrite andbC // | _ => fail end. Qed. (* The same but with an eq generation switch *) Lemma testP3 : forall (x y : nat), (y == x) && (y == x) -> y == x. move=> x y; elim E: {2}_ / eqP. match goal with _ : y = x |- (is_true ((y == x) && true) -> is_true (y == x)) => rewrite E; reflexivity | _ => fail end. match goal with _ : y <> x |- (is_true ((y == x) && false) -> is_true (y == x)) => rewrite E => /= H; exact H | _ => fail end. Qed. Inductive spec : nat -> nat -> nat -> Prop := | specK : forall a b c, a = 0 -> b = 2 -> c = 4 -> spec a b c. Lemma specP : spec 0 2 4. Proof. by constructor. Qed. Lemma testP4 : (1+1) * 4 = 2 + (1+1) + (2 + 2). Proof. case: specP => a b c defa defb defc. match goal with |- (a.+1 + a.+1) * c = b + (a.+1 + a.+1) + (b + b) => subst; done | _ => fail end. Qed. Lemma testP5 : (1+1) * 4 = 2 + (1+1) + (2 + 2). Proof. case: (1 + 1) _ / specP => a b c defa defb defc. match goal with |- b * c = a.+2 + b + (a.+2 + a.+2) => subst; done | _ => fail end. Qed. Lemma testP6 : (1+1) * 4 = 2 + (1+1) + (2 + 2). Proof. case: {2}(1 + 1) _ / specP => a b c defa defb defc. match goal with |- (a.+1 + a.+1) * c = a.+2 + b + (a.+2 + a.+2) => subst; done | _ => fail end. Qed. Lemma testP7 : (1+1) * 4 = 2 + (1+1) + (2 + 2). Proof. case: _ (1 + 1) (2 + _) / specP => a b c defa defb defc. match goal with |- b * a.+4 = c + c => subst; done | _ => fail end. Qed. Lemma testP8 : (1+1) * 4 = 2 + (1+1) + (2 + 2). Proof. case E: (1 + 1) (2 + _) / specP=> [a b c defa defb defc]. match goal with |- b * a.+4 = c + c => subst; done | _ => fail end. Qed. Variables (T : Type) (tr : T -> T). Inductive exec (cf0 cf1 : T) : seq T -> Prop := | exec_step : tr cf0 = cf1 -> exec cf0 cf1 [::] | exec_star : forall cf2 t, tr cf0 = cf2 -> exec cf2 cf1 t -> exec cf0 cf1 (cf2 :: t). Inductive execr (cf0 cf1 : T) : seq T -> Prop := | execr_step : tr cf0 = cf1 -> execr cf0 cf1 [::] | execr_star : forall cf2 t, execr cf0 cf2 t -> tr cf2 = cf1 -> execr cf0 cf1 (t ++ [:: cf2]). Lemma execP : forall cf0 cf1 t, exec cf0 cf1 t <-> execr cf0 cf1 t. Proof. move=> cf0 cf1 t; split => [] Ecf. elim: Ecf. match goal with |- forall cf2 cf3 : T, tr cf2 = cf3 -> execr cf2 cf3 [::] => myadmit | _ => fail end. match goal with |- forall (cf2 cf3 cf4 : T) (t0 : seq T), tr cf2 = cf4 -> exec cf4 cf3 t0 -> execr cf4 cf3 t0 -> execr cf2 cf3 (cf4 :: t0) => myadmit | _ => fail end. elim: Ecf. match goal with |- forall cf2 : T, tr cf0 = cf2 -> exec cf0 cf2 [::] => myadmit | _ => fail end. match goal with |- forall (cf2 cf3 : T) (t0 : seq T), execr cf0 cf3 t0 -> exec cf0 cf3 t0 -> tr cf3 = cf2 -> exec cf0 cf2 (t0 ++ [:: cf3]) => myadmit | _ => fail end. Qed. Fixpoint plus (m n : nat) {struct n} : nat := match n with | 0 => m | S p => S (plus m p) end. Definition plus_equation : forall m n : nat, plus m n = match n with | 0 => m | p.+1 => (plus m p).+1 end := fun m n : nat => match n as n0 return (forall m0 : nat, plus m0 n0 = match n0 with | 0 => m0 | p.+1 => (plus m0 p).+1 end) with | 0 => @erefl nat | n0.+1 => fun m0 : nat => erefl (plus m0 n0).+1 end m. Definition plus_rect : forall (m : nat) (P : nat -> nat -> Type), (forall n : nat, n = 0 -> P 0 m) -> (forall n p : nat, n = p.+1 -> P p (plus m p) -> P p.+1 (plus m p).+1) -> forall n : nat, P n (plus m n) := fun (m : nat) (P : nat -> nat -> Type) (f0 : forall n : nat, n = 0 -> P 0 m) (f : forall n p : nat, n = p.+1 -> P p (plus m p) -> P p.+1 (plus m p).+1) => fix plus0 (n : nat) : P n (plus m n) := eq_rect_r [eta P n] (let f1 := f0 n in let f2 := f n in match n as n0 return (n = n0 -> (forall p : nat, n0 = p.+1 -> P p (plus m p) -> P p.+1 (plus m p).+1) -> (n0 = 0 -> P 0 m) -> P n0 match n0 with | 0 => m | p.+1 => (plus m p).+1 end) with | 0 => fun (_ : n = 0) (_ : forall p : nat, 0 = p.+1 -> P p (plus m p) -> P p.+1 (plus m p).+1) (f4 : 0 = 0 -> P 0 m) => unkeyed (f4 (erefl 0)) | n0.+1 => fun (_ : n = n0.+1) (f3 : forall p : nat, n0.+1 = p.+1 -> P p (plus m p) -> P p.+1 (plus m p).+1) (_ : n0.+1 = 0 -> P 0 m) => let f5 := let p := n0 in let H := erefl n0.+1 : n0.+1 = p.+1 in f3 p H in unkeyed (let Hrec := plus0 n0 in f5 Hrec) end (erefl n) f2 f1) (plus_equation m n). Definition plus_ind := plus_rect. Lemma exF x y z: plus (plus x y) z = plus x (plus y z). elim/plus_ind: z / (plus _ z). match goal with |- forall n : nat, n = 0 -> plus x y = plus x (plus y 0) => idtac end. Undo 2. elim/plus_ind: (plus _ z). match goal with |- forall n : nat, n = 0 -> plus x y = plus x (plus y 0) => idtac end. Undo 2. elim/plus_ind: {z}(plus _ z). match goal with |- forall n : nat, n = 0 -> plus x y = plus x (plus y 0) => idtac end. Undo 2. elim/plus_ind: {z}_. match goal with |- forall n : nat, n = 0 -> plus x y = plus x (plus y 0) => idtac end. Undo 2. elim/plus_ind: z / _. match goal with |- forall n : nat, n = 0 -> plus x y = plus x (plus y 0) => idtac end. done. by move=> _ p _ ->. Qed. (* BUG elim-False *) Lemma testeF : False -> 1 = 0. Proof. by elim. Qed.