existT : forall (A : Type) (P : A -> Type) (x : A), P x -> sigT P

Argument A is implicit
Argument scopes are [type_scope _ _ _]
Expands to: Constructor Coq.Init.Specif.existT
Inductive sigT (A : Type) (P : A -> Type) : Type :=
    existT : forall x : A, P x -> sigT P

For sigT: Argument A is implicit
For existT: Argument A is implicit
For sigT: Argument scopes are [type_scope type_scope]
For existT: Argument scopes are [type_scope _ _ _]
existT : forall (A : Type) (P : A -> Type) (x : A), P x -> sigT P

Argument A is implicit
Inductive eq (A : Type) (x : A) : A -> Prop :=  eq_refl : x = x

For eq: Argument A is implicit and maximally inserted
For eq_refl, when applied to no arguments:
  Arguments A, x are implicit and maximally inserted
For eq_refl, when applied to 1 argument:
  Argument A is implicit
For eq: Argument scopes are [type_scope _ _]
For eq_refl: Argument scopes are [type_scope _]
eq_refl : forall (A : Type) (x : A), x = x

When applied to no arguments:
  Arguments A, x are implicit and maximally inserted
When applied to 1 argument:
  Argument A is implicit
Argument scopes are [type_scope _]
Expands to: Constructor Coq.Init.Logic.eq_refl
eq_refl : forall (A : Type) (x : A), x = x

When applied to no arguments:
  Arguments A, x are implicit and maximally inserted
When applied to 1 argument:
  Argument A is implicit
plus = 
fix plus (n m : nat) : nat := match n with
                              | 0 => m
                              | S p => S (plus p m)
                              end
     : nat -> nat -> nat

Argument scopes are [nat_scope nat_scope]
plus : nat -> nat -> nat

Argument scopes are [nat_scope nat_scope]
plus is transparent
Expands to: Constant Coq.Init.Peano.plus
plus : nat -> nat -> nat

plus_n_O : forall n : nat, n = n + 0

Argument scope is [nat_scope]
plus_n_O is opaque
Expands to: Constant Coq.Init.Peano.plus_n_O
Warning: Implicit Arguments is deprecated; use Arguments instead
Inductive le (n : nat) : nat -> Prop :=
    le_n : n <= n | le_S : forall m : nat, n <= m -> n <= S m

For le_S: Argument m is implicit
For le_S: Argument n is implicit and maximally inserted
For le: Argument scopes are [nat_scope nat_scope]
For le_n: Argument scope is [nat_scope]
For le_S: Argument scopes are [nat_scope nat_scope _]
Inductive le (n : nat) : nat -> Prop :=
    le_n : n <= n | le_S : forall m : nat, n <= m -> n <= S m

For le_S: Argument m is implicit
For le_S: Argument n is implicit and maximally inserted
For le: Argument scopes are [nat_scope nat_scope]
For le_n: Argument scope is [nat_scope]
For le_S: Argument scopes are [nat_scope nat_scope _]
comparison : Set

Expands to: Inductive Coq.Init.Datatypes.comparison
Inductive comparison : Set :=
    Eq : comparison | Lt : comparison | Gt : comparison
Warning: Implicit Arguments is deprecated; use Arguments instead
bar : foo

Expanded type for implicit arguments
bar : forall x : nat, x = 0

Argument x is implicit and maximally inserted
Expands to: Constant Top.bar
*** [ bar : foo ]

Expanded type for implicit arguments
bar : forall x : nat, x = 0

Argument x is implicit and maximally inserted
bar : foo

Expanded type for implicit arguments
bar : forall x : nat, x = 0

Argument x is implicit and maximally inserted
Expands to: Constant Top.bar
*** [ bar : foo ]

Expanded type for implicit arguments
bar : forall x : nat, x = 0

Argument x is implicit and maximally inserted
Module Coq.Init.Peano
Notation existS2 := existT2
Expands to: Notation Coq.Init.Specif.existS2
Warning: Implicit Arguments is deprecated; use Arguments instead
Inductive eq (A : Type) (x : A) : A -> Prop :=  eq_refl : x = x

For eq: Argument A is implicit and maximally inserted
For eq_refl, when applied to no arguments:
  Arguments A, x are implicit and maximally inserted
For eq_refl, when applied to 1 argument:
  Argument A is implicit and maximally inserted
For eq: Argument scopes are [type_scope _ _]
For eq_refl: Argument scopes are [type_scope _]
Inductive eq (A : Type) (x : A) : A -> Prop :=  eq_refl : x = x

For eq: Argument A is implicit and maximally inserted
For eq_refl, when applied to no arguments:
  Arguments A, x are implicit and maximally inserted
For eq_refl, when applied to 1 argument:
  Argument A is implicit and maximally inserted
For eq: Argument scopes are [type_scope _ _]
For eq_refl: Argument scopes are [type_scope _]