Require Import ZArith. Require Import Lia. Open Scope Z_scope. Lemma two_x_eq_1 : forall x, 2 * x = 1 -> False. Proof. intros. lia. Qed. Lemma two_x_y_eq_1 : forall x y, 2 * x + 2 * y = 1 -> False. Proof. intros. lia. Qed. Lemma two_x_y_z_eq_1 : forall x y z, 2 * x + 2 * y + 2 * z= 1 -> False. Proof. intros. lia. Qed. Lemma unused : forall x y, y >= 0 /\ x = 1 -> x = 1. Proof. intros x y. lia. Qed. Lemma omega_nightmare : forall x y, 27 <= 11 * x + 13 * y <= 45 -> -10 <= 7 * x - 9 * y <= 4 -> False. Proof. intros ; intuition auto. lia. Qed. Lemma compact_proof : forall z, (z < 0) -> (z >= 0) -> (0 >= z \/ 0 < z) -> False. Proof. intros. lia. Qed. Lemma dummy_ex : exists (x:Z), x = x. Proof. eexists. lia. Unshelve. exact Z0. Qed. Lemma unused_concl : forall x, False -> x > 0 -> x < 0. Proof. intro. lia. Qed. Lemma unused_concl_match : forall (x:Z), False -> match x with | Z0 => True | _ => x = x end. Proof. intros. lia. Qed. Lemma fresh : forall (__arith : Prop), __arith -> True. Proof. intros. lia. Qed. Class Foo {x : Z} := { T : Type ; dec : T -> Z }. Goal forall bound {F : @Foo bound} (x y : T), 0 <= dec x < bound -> 0 <= dec y < bound -> dec x + dec y >= bound -> dec x + dec y < 2 * bound. Proof. intros. lia. Qed. (* Bug 5073 *) Lemma opp_eq_0_iff a : -a = 0 <-> a = 0. Proof. lia. Qed.