(************************************************************************) (* *) (* Micromega: A reflexive tactic using the Positivstellensatz *) (* *) (* Frédéric Besson (Irisa/Inria) 2006-2008 *) (* *) (************************************************************************) Require Import ZArith Zwf Psatz QArith. Open Scope Z_scope. Lemma Zabs_square : forall x, (Z.abs x)^2 = x^2. Proof. intros ; case (Zabs_dec x) ; intros ; psatz Z 2. Qed. Hint Resolve Z.abs_nonneg Zabs_square. Lemma integer_statement : ~exists n, exists p, n^2 = 2*p^2 /\ n <> 0. Proof. intros [n [p [Heq Hnz]]]; pose (n' := Z.abs n); pose (p':=Z.abs p). assert (facts : 0 <= Z.abs n /\ 0 <= Z.abs p /\ Z.abs n^2=n^2 /\ Z.abs p^2 = p^2) by auto. assert (H : (0 < n' /\ 0 <= p' /\ n' ^2 = 2* p' ^2)) by (destruct facts as [Hf1 [Hf2 [Hf3 Hf4]]]; unfold n', p' ; psatz Z 2). generalize p' H; elim n' using (well_founded_ind (Zwf_well_founded 0)); clear. intros n IHn p [Hn [Hp Heq]]. assert (Hzwf : Zwf 0 (2*p-n) n) by (unfold Zwf; psatz Z 2). assert (Hdecr : 0 < 2*p-n /\ 0 <= n-p /\ (2*p-n)^2=2*(n-p)^2) by psatz Z 2. apply (IHn (2*p-n) Hzwf (n-p) Hdecr). Qed. Open Scope Q_scope. Lemma QnumZpower : forall x : Q, Qnum (x ^ 2)%Q = ((Qnum x) ^ 2) %Z. Proof. intros. destruct x. cbv beta iota zeta delta - [Z.mul]. ring. Qed. Lemma QdenZpower : forall x : Q, Zpos (Qden (x ^ 2)%Q) = (Zpos (Qden x) ^ 2) %Z. Proof. intros. destruct x. simpl. unfold Z.pow_pos. simpl. rewrite Pos.mul_1_r. reflexivity. Qed. Theorem sqrt2_not_rational : ~exists x:Q, x^2==2#1. Proof. unfold Qeq; intros (x,HQeq); simpl (Qden (2#1)) in HQeq; rewrite Z.mul_1_r in HQeq. assert (Heq : (Qnum x ^ 2 = 2 * Zpos (Qden x) ^ 2%Q)%Z) by (rewrite QnumZpower in HQeq ; rewrite QdenZpower in HQeq ; auto). assert (Hnx : (Qnum x <> 0)%Z) by (intros Hx; simpl in HQeq; rewrite Hx in HQeq; discriminate HQeq). apply integer_statement; exists (Qnum x); exists (Zpos (Qden x)); auto. Qed.