Inductive equivalent P Q := Equivalent (P_to_Q : P -> Q) (Q_to_P : Q -> P). Inductive equal T (x : T) : T -> Type := Equal : equal T x x. (* Arithmetic *) Inductive natural := Zero | Add_1_to (n : natural). Fixpoint add (m n : natural) : natural := match m with Zero => n | Add_1_to m_minus_1 => add m_minus_1 (Add_1_to n) end. Definition double (n : natural) : natural := add n n. Inductive odd (n : natural) := Odd (half : natural) (n_odd : equal natural n (Add_1_to (double half))). Inductive less_than (m n : natural) := LessThan (diff : natural) (m_lt_n : equal natural n (Add_1_to (add m diff))). (* Finite subsets *) Definition injective_in T R (D : T -> Type) (f : T -> R) := forall x y, D x -> D y -> equal R (f x) (f y) -> equal T x y. Inductive in_image T R (D : T -> Type) (f : T -> R) (a : R) := InImage (x : T) (x_in_D : D x) (a_is_fx : equal R a (f x)). Inductive finite_of_order T (D : T -> Type) (n : natural) := FiniteOfOrder (rank : T -> natural) (rank_injective : injective_in T natural D rank) (rank_onto : forall i, equivalent (less_than i n) (in_image T natural D rank i)).