Notation compose := (fun g f x => g (f x)). Notation "g 'o' f" := (compose g f) (at level 40, left associativity) : function_scope. Open Scope function_scope. Inductive paths {A : Type} (a : A) : A -> Type := idpath : paths a a where "x = y" := (@paths _ x y) : type_scope. Arguments idpath {A a} , [A] a. Definition ap {A B:Type} (f:A -> B) {x y:A} (p:x = y) : f x = f y := match p with idpath => idpath end. Class IsEquiv {A B : Type} (f : A -> B) := { equiv_inv : B -> A }. Notation "f ^-1" := (@equiv_inv _ _ f _) (at level 3, format "f '^-1'") : equiv_scope. Local Open Scope equiv_scope. Axiom eisretr : forall {A B} (f : A -> B) `{IsEquiv A B f} x, f (f^-1 x) = x. Generalizable Variables A B C f g. Global Instance isequiv_compose `{IsEquiv A B f} `{IsEquiv B C g} : IsEquiv (compose g f) | 1000 := Build_IsEquiv A C (compose g f) (compose f^-1 g^-1). Definition isequiv_homotopic {A B} (f : A -> B) {g : A -> B} `{IsEquiv A B f} (h : forall x, f x = g x) : IsEquiv g := Build_IsEquiv _ _ g (f ^-1). Global Instance isequiv_inverse {A B} (f : A -> B) `{IsEquiv A B f} : IsEquiv f^-1 | 10000 := Build_IsEquiv B A f^-1 f. Definition cancelR_isequiv {A B C} (f : A -> B) {g : B -> C} `{IsEquiv A B f} `{IsEquiv A C (g o f)} : IsEquiv g. Proof. Unset Typeclasses Modulo Eta. exact (isequiv_homotopic (compose (compose g f) f^-1) (fun b => ap g (eisretr f b))) || fail "too early". Undo. Set Typeclasses Modulo Eta. Set Typeclasses Dependency Order. Set Typeclasses Debug. Fail exact (isequiv_homotopic (compose (compose g f) f^-1) (fun b => ap g (eisretr f b))).