Require Import TestSuite.admit. (* File reduced by coq-bug-finder from original input, then from 9113 lines to 279 lines *) (* coqc version trunk (October 2014) compiled on Oct 19 2014 18:56:9 with OCaml 3.12.1 coqtop version trunk (October 2014) *) Notation Type0 := Set. Notation idmap := (fun x => x). Notation "( x ; y )" := (existT _ x y) : fibration_scope. Open Scope fibration_scope. Notation pr1 := projT1. Notation "x .1" := (pr1 x) (at level 3, format "x '.1'") : fibration_scope. Definition compose {A B C : Type} (g : B -> C) (f : A -> B) := fun x => g (f x). Notation "g 'o' f" := (compose g f) (at level 40, left associativity) : function_scope. Open Scope function_scope. Inductive paths {A : Type} (a : A) : A -> Type := idpath : paths a a. Arguments idpath {A a} , [A] a. Notation "x = y :> A" := (@paths A x y) : type_scope. Notation "x = y" := (x = y :>_) : type_scope. Definition inverse {A : Type} {x y : A} (p : x = y) : y = x. admit. Defined. Definition concat {A : Type} {x y z : A} (p : x = y) (q : y = z) : x = z := match p, q with idpath, idpath => idpath end. Notation "1" := idpath : path_scope. Notation "p @ q" := (concat p q) (at level 20) : path_scope. Notation "p ^" := (inverse p) (at level 3, format "p '^'") : path_scope. Notation "p @' q" := (concat p q) (at level 21, left associativity, format "'[v' p '/' '@'' q ']'") : long_path_scope. Definition transport {A : Type} (P : A -> Type) {x y : A} (p : x = y) (u : P x) : P y. exact (match p with idpath => u end). Defined. Notation "p # x" := (transport _ p x) (right associativity, at level 65, only parsing) : path_scope. Definition ap {A B:Type} (f:A -> B) {x y:A} (p:x = y) : f x = f y. exact (match p with idpath => idpath end). Defined. Definition pointwise_paths {A} {P:A->Type} (f g:forall x:A, P x) := forall x:A, f x = g x. Notation "f == g" := (pointwise_paths f g) (at level 70, no associativity) : type_scope. Definition Sect {A B : Type} (s : A -> B) (r : B -> A) := forall x : A, r (s x) = x. Class IsEquiv {A B : Type} (f : A -> B) := BuildIsEquiv { equiv_inv : B -> A ; eisretr : Sect equiv_inv f; eissect : Sect f equiv_inv; eisadj : forall x : A, eisretr (f x) = ap f (eissect x) }. Arguments eisretr {A B} f {_} _. Record Equiv A B := BuildEquiv { equiv_fun : A -> B ; equiv_isequiv : IsEquiv equiv_fun }. Coercion equiv_fun : Equiv >-> Funclass. Global Existing Instance equiv_isequiv. Notation "A <~> B" := (Equiv A B) (at level 85) : equiv_scope. Notation "f ^-1" := (@equiv_inv _ _ f _) (at level 3, format "f '^-1'") : equiv_scope. Class Contr_internal (A : Type) := BuildContr { center : A ; contr : (forall y : A, center = y) }. Inductive trunc_index : Type := | minus_two : trunc_index | trunc_S : trunc_index -> trunc_index. Notation "n .+1" := (trunc_S n) (at level 2, left associativity, format "n .+1") : trunc_scope. Local Open Scope trunc_scope. Notation "-2" := minus_two (at level 0) : trunc_scope. Notation "-1" := (-2.+1) (at level 0) : trunc_scope. Fixpoint IsTrunc_internal (n : trunc_index) (A : Type) : Type := match n with | -2 => Contr_internal A | n'.+1 => forall (x y : A), IsTrunc_internal n' (x = y) end. Class IsTrunc (n : trunc_index) (A : Type) : Type := Trunc_is_trunc : IsTrunc_internal n A. Notation IsHProp := (IsTrunc -1). Monomorphic Axiom dummy_funext_type : Type0. Monomorphic Class Funext := { dummy_funext_value : dummy_funext_type }. Local Open Scope path_scope. Definition concat_p1 {A : Type} {x y : A} (p : x = y) : p @ 1 = p := match p with idpath => 1 end. Definition concat_1p {A : Type} {x y : A} (p : x = y) : 1 @ p = p := match p with idpath => 1 end. Definition concat_p_pp {A : Type} {x y z t : A} (p : x = y) (q : y = z) (r : z = t) : p @ (q @ r) = (p @ q) @ r := match r with idpath => match q with idpath => match p with idpath => 1 end end end. Definition concat_pp_p {A : Type} {x y z t : A} (p : x = y) (q : y = z) (r : z = t) : (p @ q) @ r = p @ (q @ r) := match r with idpath => match q with idpath => match p with idpath => 1 end end end. Definition moveL_Mp {A : Type} {x y z : A} (p : x = z) (q : y = z) (r : y = x) : r^ @ q = p -> q = r @ p. admit. Defined. Ltac with_rassoc tac := repeat rewrite concat_pp_p; tac; repeat rewrite concat_p_pp. Ltac rewrite_moveL_Mp_p := with_rassoc ltac:(apply moveL_Mp). Definition ap_p_pp {A B : Type} (f : A -> B) {w : B} {x y z : A} (r : w = f x) (p : x = y) (q : y = z) : r @ (ap f (p @ q)) = (r @ ap f p) @ (ap f q). admit. Defined. Definition ap_compose {A B C : Type} (f : A -> B) (g : B -> C) {x y : A} (p : x = y) : ap (g o f) p = ap g (ap f p) := match p with idpath => 1 end. Definition concat_Ap {A B : Type} {f g : A -> B} (p : forall x, f x = g x) {x y : A} (q : x = y) : (ap f q) @ (p y) = (p x) @ (ap g q) := match q with | idpath => concat_1p _ @ ((concat_p1 _) ^) end. Definition transportD2 {A : Type} (B C : A -> Type) (D : forall a:A, B a -> C a -> Type) {x1 x2 : A} (p : x1 = x2) (y : B x1) (z : C x1) (w : D x1 y z) : D x2 (p # y) (p # z) := match p with idpath => w end. Local Open Scope equiv_scope. Definition transport_arrow_toconst {A : Type} {B : A -> Type} {C : Type} {x1 x2 : A} (p : x1 = x2) (f : B x1 -> C) (y : B x2) : (transport (fun x => B x -> C) p f) y = f (p^ # y). admit. Defined. Definition transport_arrow_fromconst {A B : Type} {C : A -> Type} {x1 x2 : A} (p : x1 = x2) (f : B -> C x1) (y : B) : (transport (fun x => B -> C x) p f) y = p # (f y). admit. Defined. Definition ap_transport_arrow_toconst {A : Type} {B : A -> Type} {C : Type} {x1 x2 : A} (p : x1 = x2) (f : B x1 -> C) {y1 y2 : B x2} (q : y1 = y2) : ap (transport (fun x => B x -> C) p f) q @ transport_arrow_toconst p f y2 = transport_arrow_toconst p f y1 @ ap (fun y => f (p^ # y)) q. admit. Defined. Class Univalence. Definition path_universe {A B : Type} (f : A -> B) {feq : IsEquiv f} : (A = B). admit. Defined. Definition transport_path_universe {A B : Type} (f : A -> B) {feq : IsEquiv f} (z : A) : transport (fun X:Type => X) (path_universe f) z = f z. admit. Defined. Definition transport_path_universe_V `{Funext} {A B : Type} (f : A -> B) {feq : IsEquiv f} (z : B) : transport (fun X:Type => X) (path_universe f)^ z = f^-1 z. admit. Defined. Ltac simpl_do_clear tac term := let H := fresh in assert (H := term); simpl in H |- *; tac H; clear H. Tactic Notation "simpl" "rewrite" constr(term) := simpl_do_clear ltac:(fun H => rewrite H) term. Global Instance Univalence_implies_Funext `{Univalence} : Funext. Admitted. Section Factorization. Context {class1 class2 : forall (X Y : Type@{i}), (X -> Y) -> Type@{i}} `{forall (X Y : Type@{i}) (g:X->Y), IsHProp (class1 _ _ g)} `{forall (X Y : Type@{i}) (g:X->Y), IsHProp (class2 _ _ g)} {A B : Type@{i}} {f : A -> B}. Record Factorization := { intermediate : Type ; factor1 : A -> intermediate ; factor2 : intermediate -> B ; fact_factors : factor2 o factor1 == f ; inclass1 : class1 _ _ factor1 ; inclass2 : class2 _ _ factor2 }. Record PathFactorization {fact fact' : Factorization} := { path_intermediate : intermediate fact <~> intermediate fact' ; path_factor1 : path_intermediate o factor1 fact == factor1 fact' ; path_factor2 : factor2 fact == factor2 fact' o path_intermediate ; path_fact_factors : forall a, path_factor2 (factor1 fact a) @ ap (factor2 fact') (path_factor1 a) @ fact_factors fact' a = fact_factors fact a }. Context `{Univalence} {fact fact' : Factorization} (pf : @PathFactorization fact fact'). Let II := path_intermediate pf. Let ff1 := path_factor1 pf. Let ff2 := path_factor2 pf. Local Definition II' : intermediate fact = intermediate fact'. admit. Defined. Local Definition fff' (a : A) : (transportD2 (fun X => A -> X) (fun X => X -> B) (fun X g h => {_ : forall a : A, h (g a) = f a & {_ : class1 A X g & class2 X B h}}) II' (factor1 fact) (factor2 fact) (fact_factors fact; (inclass1 fact; inclass2 fact))).1 a = ap (transport (fun X => X -> B) II' (factor2 fact)) (transport_arrow_fromconst II' (factor1 fact) a @ transport_path_universe II (factor1 fact a) @ ff1 a) @ transport_arrow_toconst II' (factor2 fact) (factor1 fact' a) @ ap (factor2 fact) (transport_path_universe_V II (factor1 fact' a)) @ ff2 (II^-1 (factor1 fact' a)) @ ap (factor2 fact') (eisretr II (factor1 fact' a)) @ fact_factors fact' a. Proof. Open Scope long_path_scope. rewrite (ap_transport_arrow_toconst (B := idmap) (C := B)). simpl rewrite (@ap_compose _ _ _ (transport idmap (path_universe II)^) (factor2 fact)). rewrite <- ap_p_pp; rewrite_moveL_Mp_p. Set Debug Tactic Unification. Fail rewrite (concat_Ap ff2).