Require Import Program.Tactics. Obligation Tactic := idtac. Set Universe Polymorphism. Inductive paths {A : Type} (a : A) : A -> Type := idpath : paths a a. Inductive Empty : Type :=. Inductive Unit : Type := tt. Definition not (A : Type) := A -> Empty. Lemma nat_path_O_S (n : nat) (H : paths O (S n)) : Empty. Proof. refine ( match H in paths _ i return match i with | O => Unit | S _ => Empty end with | idpath _ => tt end ). Defined. Lemma symmetry {A} (x y : A) (p : paths x y) : paths y x. Proof. destruct p. apply idpath. Defined. Lemma nat_path_S_O (n : nat) (H : paths (S n) O) : Empty. Proof. eapply nat_path_O_S. exact (symmetry _ _ H). Defined. Set Printing Universes. Program Fixpoint succ_not_zero (n:nat) : not (paths (S n) 0) := match n as n return not (paths (S n) 0) with | 0 => nat_path_S_O _ | S n' => let dummy := succ_not_zero n' in _ end. Next Obligation. intros f _ n dummy H. exact (nat_path_S_O _ H). Show Universes. Defined.