Goal ((forall (t : Type) (x y : t), True -> x = y)) -> False. Proof. intro HG. let P := lazymatch goal with | [ H : forall t x y, True -> @?P t x y |- _ ] => P end in pose (f := P). unify f (fun (t : Type) (x y : t) => x = y). Abort. Goal True. Proof. let c := lazymatch constr:(fun (T : nat -> Type) (y : nat) (_ : T y) => y) with | fun _ y _ => @?C y => C end in pose (f := c). unify f (fun n : nat => n). Abort. Goal (forall x : nat, x = x -> x = x \/ x = x) -> True. Proof. intro. let P := lazymatch goal with | [ H : forall y, @?P y -> @?P y \/ _ |- _ ] => P end in pose (f := P). unify f (fun x : nat => x = x). Abort. Goal (forall x : nat, x = x -> x = x \/ x = x) -> True. Proof. intro. lazymatch goal with | [ H : forall y, @?P y -> @?Q y \/ _ |- _ ] => idtac end. Abort. Axiom eq : forall {T} (_ : T), Prop. Goal forall _ : (forall t (_ : eq t) (x : t), eq x), Prop. Proof. intro. let P := lazymatch goal with | [ H : forall t _ x, @?P t x |- _ ] => P end in pose (f := P). Abort.